Свч диапазон частот

Радиоволны широко используются в радиосвязи, радиовещании, телевидении, медицине, радиолокации, радионавигации, радиоастрономии, ядерной физике, металлургической промышленности (при сварке, закалке, плавке, выбраковке металлических изделий, склейке пластмасс и деревянных изделий и т. д.).

В настоящее время принята следующая классификация радиочастот (таблица 1).

Таблица 1

ЧастотыВысокие частоты (ВЧ)Ультравысокие частоты (УВЧ)Сверхвысокие частоты (СВЧ)
100 кГц— 30 МГц 30—300 МГц 300—300 000 МГц
Длины волн Длинные Средние Короткие Ультракороткие Микроволны
дециметровые сантиметровые миллиметровые
  3—1 км 1 км — 100 м 100—10 м 10—1 м 1 м—10 см 10—1 см 1 см— 1 мм

Радиоволны в медицине используют для лечебных целей в форме синусоидальных модулированных токов (5 кГц), терапии надтональной частотой (20 кГц), дарсонвализации (110 кГц), диатермии (1,5—1,8 МГц), индуктотермии (13,56 и 40,68 МГц), УВЧ-терапии (40,68 МГц), дециметровой терапии (460 МГц) и микроволновой терапии (2375 МГц) — см. Дарсонвализация, Диатермия, Импульсный ток, Индуктотермия, Микроволновая  терапия,   УВЧ-терапия.

Профессиональные вредности радиоволн. Искусственными источниками электромагнитных полей ВЧ, УВЧ, СВЧ могут являться различные типы генераторов, индукторы, блоки передатчиков, фидерные линии, конденсаторы, антенные системы и др. Лица, работающие с генераторами и передающей системой электромагнитных колебаний радиочастот, могут подвергаться воздействию различных диапазонов ВЧ, УВЧ, СВЧ. При конструировании, испытании, настройке и эксплуатации станций, отдельных блоков, генерирующих электромагнитную энергию, возможно излучение волн в рабочее помещение. Это бывает при плохой экранировке блоков передатчиков, волноводных трактов, нерациональном расположении антенно-фидерных систем и т. п., а также при нарушении техники безопасности. Иногда возможно облучение персонала и населения, не связанного профессионально с излучающей аппаратурой, но попадающего под воздействие радиоволн от мощных антенных систем.

Интенсивность полей ВЧ и УВЧ принято оценивать по напряженности электрической (Е) и магнитной (И) составляющих. Для Е интенсивность выражается в вольтах на 1 м (в/м), для Я — в амперах на 1 л (а/м). В диапазоне СВЧ интенсивность облучения оценивается по плотности потока мощности (ППМ) и выражается в ваттах на 1 см2 (Вт/см2), милливаттах (мвт/см2), микроваттах (мквт/см2).

Измерение напряженности ВЧ и УВЧ осуществляется прибором ИЭМП-1, в диапазоне СВЧ по плотности потока мощности — прибором ПО-1.

В целях предотвращения переоблучения и сохранения здоровья трудящихся в СССР введены «Санитарные нормы и правила при работе с источниками электромагнитных полей высоких, ультравысоких и сверхвысоких частот», устанавливающие предельно допустимые уровни (таблица 2).

Таблица 2

ДиапазонПредельно допустимые уровнипо Епо НПлотность потока мощности
По электрической составляющей
100 кГц—30 МГц (ВЧ)
30—300 МГц (УВЧ)
По магнитной составляющей
100 кГц — 1,5 МГц
По СВЧ
300—300 000 МГц
в течение рабочего дня
в течение 2 часовв
течение 15—20 минут

для населения и лиц, профессионально не связанных с СВЧ-облучением

20 В/м
5 В/м




5 А/м




Не более 10 мкВт/см2
Не более 100 мкВт/см2
Не более 1000 мкВт/см2 с обязательным применением защитных очков

1 мкВт/см2

Систематическое облучение радиоволнами с уровнями, превышающими допустимые, может привести к значительным изменениям некоторых систем организма человека.

Отмечается развитие астенического синдрома различной степени выраженности. При этом характерны жалобы на головные боли, понижение работоспособности, расстройство сна, раздражительность, повышенную потливость, ослабление памяти, иногда снижение половой потенции. При длительных и частых облучениях выше предельно допустимых уровней могут возникать тремор век и пальцев вытянутых рук, повышение сухожильных рефлексов, вегетативные расстройства (красный стойкий дермографизм, акроцианоз, гипергидроз и др.), чувство страха, галлюцинации, обморочное состояние и др. Результаты электроэнцефалограммы указывают на функциональные сдвиги в виде развития торможения в корковых клетках.

Со стороны сердечно-сосудистой системы изменения чаще идут по типу нейроциркуляторной дистонии с характерными жалобами: боли в области сердца, одышка, особенно при физической нагрузке, ощущение сердцебиения и «замирания» сердца. Объективно: брадикардия, гипотония, приглушение первого тона сердца, иногда систолический шум на верхушке, синусовая аритмия, признаки гипоксии миокарда и др. Иногда наблюдается лейкопения, относительный лимфоцитоз, эозинофилия, увеличение числа эритроцитов. Однако изменения состава периферической крови не являются стойкими, а иногда по своим показателям противоречивы.

Отмечаются слезотечение, резь в глазах, ощущение «песка» за веками конъюнктивиты. При грубых нарушениях техники безопасности при работе с источниками излучения, главным образом СВЧ диапазона, может развиться катаракта.

Со стороны эндокринной системы отмечено усиление функции гипофиза и коры надпочечников, а также повышение активности щитовидной железы.

Необходимо иметь в виду, что клиническая   картина   при воздействии электромагнитных излучений различных   диапазонов (ВЧ, УВЧ, СВЧ) имеет свои особенности и может значительно варьировать. Все  вышеперечисленные изменения в большинстве  своем обратимы.

Профилактика: при проектировании, размещении, строительстве, приемке и эксплуатации всех типов станций радиочастотного диапазона для предотвращения переоблучения людей необходимо особое внимание уделять экранировке рабочего места или обеспечению дистанционного управления, рациональному размещению блоков приемопередающей аппаратуры, сокращению времени пребывания людей в местах вероятного облучения в соответствии с нормативами, использованию при необходимости индивидуальных средств защиты (комбинезоны, очки и др.). Систематические измерения интенсивности ВЧ—УВЧ и СВЧ-полей.

При приеме на работу проводятся обязательные предварительные медосмотры. Периодические медосмотры по показаниям, но не реже 1 раза в год. Лица с наличием выраженного воздействия электромагнитных полей радиочастот, а также с общими заболеваниями, течение которых может ухудшиться в условиях хронического воздействия полей радиочастот, и женщины в период беременности и кормления переводятся на другую работу.

К работе с источниками электромагнитных полей допускаются только лица старше 18 лет. Как лечебные средства применяются общеукрепляющие, тонизирующие и симптоматические препараты.

Что такое микроволны?

Свойства сверхвысокочастотных волн

В современной жизни сверхвысокочастотные волны используются весьма активно. Взгляните на ваш сотовый телефон – он работает в диапазоне сверхвысокочастотного излучения.

Все технологии, такие как Wi-Fi, беспроводной Wi-Max, 3G, 4G, LTE (Long Term Evolution), радиоинтерфейс малого радиуса действия Bluetooth, системы радиолокации и радионавигации используют сверхвысокочастотные (СВЧ) волны.

СВЧ нашли применение в промышленности и медицине.

По-другому СВЧ волны ещё называют микроволнами. Работа бытовой микроволновой печи также основана на применении СВЧ излучения.

Микроволны – это те же самые радиоволны, но длина волны у таких волн составляет от десятков сантиметров до миллиметра. Микроволны занимают промежуточное место между ультракороткими волнами и излучением инфракрасного диапазона.

Такое промежуточное положение оказывает влияние и на свойства микроволн. Микроволновое излучение обладает свойствами, как радиоволн, так и световых волн. Например, СВЧ излучению присущи качества видимого света и инфракрасного электромагнитного излучения.


Станция мобильной сети стандарта LTE

Микроволны, длина волны которых составляет сантиметры, при высоких уровнях излучения способны оказывать биологическое воздействие.

Кроме этого сантиметровые волны хуже проходят через здания, чем дециметровые.

СВЧ излучение можно концентрировать в узконаправленный луч.

Это свойство напрямую сказывается на конструкции приёмных и передающих антенн, работающих в диапазоне СВЧ. Никого не удивит вогнутая параболическая антенна спутникового телевидения, принимающая высокочастотный сигнал, словно вогнутое зеркало, собирающее световые лучи.

Микроволны подобно свету распространяются по прямой и перекрываются твёрдыми объектами, наподобие того, как свет не проходит сквозь непрозрачные тела. Так, если в квартире развернуть локальную Wi-Fi сеть, то в направлении, где радиоволна встретит на своём пути препятствия, вроде перегородок или перекрытий, сигнал сети будет меньше, чем в направлении более свободном от преград.

Излучение от базовых станций сотовой связи GSM довольно сильно ослабляют сосновые леса, так как размеры и длина иголок приблизительно равны половине длины волны, и иголки служат своеобразными приёмными антеннами, тем самым ослабляя электромагнитное поле.

Также на ослабление сигнала станций влияют и густые тропические леса. С ростом частоты увеличивается затухание СВЧ–излучения при перекрытии его естественными препятствиями.


Аппаратуру сотовой связи можно обнаружить даже на столбах электроснабжения

Распространение микроволн в свободном пространстве, например, вдоль поверхности земли ограничено горизонтом, в противоположность длинным волнам, которые могут огибать земной шар за счёт отражения в слоях ионосферы.

Данное свойство СВЧ излучения используется в сотовой связи.

Область обслуживания делиться на соты, в которых действует базовая станция, работающая на своей частоте. Соседняя базовая станция работает уже на другой частоте, чтобы рядом расположенные станции не создавали помех друг другу. Далее происходит так называемое повторное использование радиочастот.

Поскольку излучение станции перекрывается горизонтом, то на некотором удалении можно установить станцию, работающую на той же частоте.

В результате мешать такие станции друг другу не будут. Получается, что экономиться полоса радиочастот, используемая сетью связи.


Антенны базовых станций GSM

Радиочастотный спектр является природным, ограниченным ресурсом, наподобие нефти или газа.

Распределением частот в России занимается государственная комиссия по радиочастотам – ГКРЧ.

Особенности построения техники СВЧ.

Чтобы получить разрешение на развёртывание сетей беспроводного доступа порой ведутся настоящие «корпоративные войны» между операторами мобильных сетей связи.

Почему микроволновое излучение используется в системах радиосвязи, если оно не обладает такой дальностью распространения, как, например, длинные волны?

Причина в том, что чем выше частота излучения, тем больше информации можно передавать с его помощью.

К примеру, многие знают, что оптоволоконный кабель обладает чрезвычайно высокой скоростью передачи информации исчисляемой терабитами в секунду.

Все высокоскоростные телекоммуникационные магистрали используют оптоволокно. В качестве переносчика информации здесь служит свет, частота электромагнитной волны которого несоизмеримо выше, чем у микроволн. Микроволны в свою очередь имеют свойства радиоволн и беспрепятственно распространяются в пространстве. Световой и лазерные лучи сильно рассеиваются в атмосфере и поэтому не могут быть использованы в мобильных системах связи.

У многих дома на кухне есть СВЧ–печь (микроволновка), с помощью которой разогревают пищу.

Работа данного устройства основана на поляризационных эффектах микроволнового излучения. Следует отметить, что разогрев объектов, с помощью СВЧ–волн происходит в большей степени изнутри, в отличие от инфракрасного излучения, которое разогревает объект снаружи внутрь.

Поэтому нужно понимать, что разогрев в обычной и СВЧ–печи происходит по-разному. Также микроволновое излучение, например, на частоте 2,45 ГГц способно проникать внутрь тела на несколько сантиметров, а производимый нагрев ощущается при плотности мощности в 2050 мВт/см2 при действии излучения в течение нескольких секунд.

Понятно, что мощное СВЧ–излучение может вызывать внутренние ожоги, так как разогрев происходит изнутри.

На частоте работы микроволновки, равной 2,45 Гигагерцам, обычная вода способна максимально поглощать энергию сверхвысокочастотных волн и преобразовывать её в тепло, что, собственно, и происходит в микроволновке.

В то время пока идут неутихающие споры о вреде СВЧ-излучения военные уже имеют возможность проверить на деле так называемую «лучевую пушку».

Так в Соединённых штатах разработана установка, которая «стреляет» узконаправленным СВЧ-лучём.

Установка на вид представляет собой что-то вроде параболической антенны, только невогнутой, а плоской.

Диаметр антенны довольно большой – это и понятно, ведь необходимо сконцентрировать СВЧ-излучение в узконаправленный луч на большое расстояние. СВЧ-пушка работает на частоте 95 Гигагерц, а её эффективная дальность «стрельбы» составляет около 1 километра. По заявлениям создателей – это не предел.

Вся установка базируется на армейском хаммере.

По словам разработчиков, данное устройство не представляет смертельной угрозы и будет применяться для разгона демонстраций. Мощность излучения такова, что при попадании человека в фокус луча, у него возникает сильное жжение кожи. По словам тех, кто попадал под такой луч, кожа будто бы разогревается очень горячим воздухом. При этом возникает естественное желание укрыться, сбежать от такого эффекта.

Действие данного устройства основано на том, что микроволновое излучение частотой 95 ГГц проникает на пол миллиметра в слой кожи и вызывает локальный нагрев за доли секунды.

Этого достаточно, чтобы человек, оказавшийся под прицелом, ощутил боль и жжение поверхности кожи. Аналогичный принцип используется и для разогрева пищи в микроволновой печи, только в микроволновке СВЧ-излучение поглощается разогреваемой пищей и практически не выходит за пределы камеры.

На данный момент биологическое воздействие микроволнового излучения до конца не изучено.

Поэтому, чтобы не говорили создатели о том, что СВЧ-пушка не вредна для здоровья, она может причинить вред органам и тканям человеческого тела.

Стоит отметить, что СВЧ-излучение наиболее вредно для органов с медленной циркуляцией тепла – это ткани головного мозга и глаз.

Ткани мозга не имеют болевых рецепторов, и почувствовать явное воздействие излучения не удастся. Также с трудом вериться, что на разработку «отпугивателя демонстрантов» будут отпускаться немалые деньги – 120 миллионов долларов. Естественно, это военная разработка. Кроме этого нет особых преград, чтобы увеличить мощность высокочастотного излучения пушки до такого уровня, когда его уже можно использовать в качестве поражающего оружия.

Также при желании её можно сделать и более компактной.

В планах военных создать летающую версию СВЧ-пушки. Наверняка её установят на какой-нибудь беспилотник и будут управлять им удалённо.

Вред микроволнового излучения

В документах на любой электронный прибор, который способен излучать СВЧ-волны упоминается так называемый SAR.

SAR – это удельный коэффициент поглощения электромагнитной энергии. Простым языком – это мощность излучения, которая поглощается живыми тканями тела. Измеряется SAR в ваттах на килограмм.

Так вот, для США определён допустимый уровень в 1,6 Вт/кг. Для Европы он чуть больше. Для головы 2 Вт/кг, для остальных частей тела и вовсе 4 Вт/кг.

В России действуют более строгие ограничения, а допустимое излучение меряется уже в Вт/см2. Норма составляет 10 мкВт/см2.

Несмотря на то, что СВЧ излучение принято считать неионизирующим, стоит отметить, что оно в любом случае оказывает влияние на любые живые организмы. Например, в книге «Мозг в электромагнитных полях» (Ю.

А. Холодов) приводятся результаты множества экспериментов, а также тернистая история внедрения норм на облучение электромагнитными полями. Результаты весьма любопытны. Микроволновое излучение влияет на многие процессы, протекающие в живых организмах. Если интересно, почитайте.

Из всего этого следует несколько простых правил.

Как можно меньше болтать по мобильному телефону. Держать его подальше от головы и важных частей тела. Не спать со смартфоном в обнимку.

По возможности использовать гарнитуру. Держаться подальше от базовых станций сотовой связи (речь идёт о жилых и рабочих помещениях). Не секрет, что антенны подвижной связи ставят на крышах жилых домов.

Также стоит «швырнуть камень в огород» мобильного интернета при использовании смартфона или планшета.

Если вы «сидите в интернете», то устройство постоянно передаёт данные базовой станции. Даже если излучение по мощности небольшое (всё зависит от качества связи, помех и удалённости базовой станции), то при длительном использовании негативный эффект обеспечен.

Нет, вы не облысеете и не начнёте светиться. В мозгу нет болевых рецепторов. Поэтому он будет устранять «проблемы» по «мере сил и возможностей». Просто будет сложнее сконцентрироваться, усилится усталость и пр.

Это как пить яд малыми дозами.

Главная &raquo Технологии &raquo Текущая страница

Также Вам будет интересно узнать:

Радиоволны сверхвысоких частот (СВЧ)

Сверхвысоких частот диапазон, частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.
Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн.

Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами.

К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров.

Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

ЭМИ может быть непрерывным или прерывистым (импульсным). Последний режим позволяет создавать значительную мощность в каждом отдельном импульсе. Электромагнитное поле характеризуется векторами напряженности электрического (Е) и магнитного (Н) полей. При частоте колебаний ниже 300 мГц в качестве характеристики ЭМ-поля принимается силовая характеристика — напряженность электрического поля, В/м или напряженность магнитного поля — А/м.

При частоте колебаний выше 300 мГц поле оценивается энергетической характеристикой — плотность потока энергии (ППЭ), Вт/м кв. (или ее производными мВт/см2, мкВт/см2).
Для количественной оценки поглощенной энергии введено понятие удельной поглощенной мощности — УПМ (SAR — specific absorpion rate — американских авторов).

Под УПМ понимается количество поглощаемой мощности приходящейся на единицу массы тела, то есть — это усредненная величина, характеризующая скорость поступления энергии СВЧ-поля в поглощающее тело и представляемая как мощность отнесенная к объему — Вт/м3(мВт/см3) или массе — Вт/кг (мВт/г).

Установлено, что предельной для терморегуляции человека является 4 Вт/кг, а ПДУ — 0,4 Вт/кг. 
Проблема метрологической оценки поглощенной человеком ЭМ мощности (и энергии) достаточно сложна.

Особенности СВЧ диапазона и его использование

В настоящее время аппаратура для измерений поглощенной ЭМ мощности человеком, облученным СВЧ-полем в свободном пространстве, пока еще не разработана. 
Оценку воздействия проводят по измеренной падающей на человека ППЭ и на ее основе методами математических моделей рассчитывают УПМ. 
Для измерений падающей мощности непрерывных СВЧ-излучений используются отечественные измерители типа ПЗ-9 и ПЗ-16, которые также обеспечивают возможность оценки средней мощнос-ти импульсных излучений.

Механизм биологического действия СВЧ-радиоволн

Известно, что эффект воздействия СВЧ ЭМ-поля на биологические объекты в известной степени определяется количеством проникающей в них и поглощаемой ими электромагнитной энергии.

Значительная часть энергии микроволн поглощается тканями организма и превращается в тепло, что объясняют возникновением колебания ионов и дипольных молекул воды, содержащихся в тканях. Наиболее эффективное поглощение микроволн отмечается в тканях с большим содержанием воды: кровь, тканевая жидкость, слизистая желудка, кишок, хрусталик глаза и др. 
Нагрев тканей в СВЧ-поле является наиболее простым и очевидным эффектом действия микроволн на организм человека.

Положение максимума температуры, его удаление от поверхности тела зависит от проводимости среды, а, следовательно, и от частоты радиоволны, действующей на ткань: с увеличением частоты (укорочением волны) максимум температуры приближается к поверхности. 
Принято различать тепловое действие микроволн — при ППЭ, превышающей 10 мВт/см2, и нетепловое — при ППЭ ниже 10 мВт/см2.

Такое деление условно, так как в действительности имеет место и то и другое действие. 
Первичный механизм теплового действия изучен довольно обстоятельно. Обнаружено, что температурное распределение, которое устанавливается в живом организме под действием микроволн, зависит не только от длины волны, интенсивности излучаемой энергии (ППЭ) и продолжительности воздействия, но и от ряда других факторов, главными из которых являются теплообмен на поверхности нагреваемого объекта (естественное или принудительное охлаждение), тканевая структура объекта (однородность или слоистое строение), интенсивность кровоснабжения в нагреваемой области и др. 
Изучение механизма нетеплового действия выдвигает гораздо более трудные задачи.

Само нетепловое или как его называют специфическое действие не является столь бесспорным как тепловое действие микроволн. Специфическим нетепловое действие называют на основании предположения о существовании каких-либо первичных механизмов взаимодействия, специфических именно для ЭМИ СВЧ. Сказать что-либо вполне определенное о микроприроде специфического действия микроволн на основании имеющихся материалов трудно и, тем не менее, данные, подтверждающие действие СВЧ-поля без нагрева, существуют.

Они были получены из наблюдений за реакциями целостных организмов на воздействие микроволн небольшой интенсивности.

В настоящее время существует три теории нетермического действия микроволн на организм. Эффекты слабых полей объясняют кооперативными процессами, основанными на резонансных взаимодействиях биологических макромолекул.

Считается, что ими являются белковые молекулы, входящие в состав мембраны. 
Нетепловые резонансные эффекты миллиметровых волн связывают с синхронизацией существующих в норме несфазированных колебаний множества осцилляторов живой клетки (например, колебания групп тема в молекуле гемоглобина эритроцита или колебания белковых молекул в мембране). 
Для объяснения нетермических эффектов можно привлекается теория Фрелиха, согласно которой при воздействии ЭМ энергии может произойти полярная перестройка биомолекул, способная дать на резонансной частоте колебания большой амплитуды за счет перекачки энергии (по аналогии с химическими лазерами). 
Точкой приложения любого патогенного фактора является система регуляции.

Большинство жалоб и объективных данных при синдроме ЭМ воздействия укладывается в картину динамических нарушений регуляторного звена. 
В обобщенном виде можно сказать, что последствия ЭМИ-облучения проявляются: угнетением и истощением процессов нервной и эндокринной регуляции; сдвигами в обмене веществ, угнетением синтетических процессов; снижением неспецифической резистентности, ослаблением иммунных процессов; снижением адаптации к факторам окружающей среды. 
Следствием перечисленного будут: повышение заболеваемости (общей, инфекционной, соматической), преморбидные состояния; отягощение имеющихся хронических заболеваний; функциональные расстройства в сердечно-сосудистой, кроветворной, генеративной и других системах организма; невротические расстройства; нарушение гормонального баланса, преждевременное старение организма; возможны онкогенные процессы и отдаленные последствия среди потомства.

В ряде случаев влияние ЭМИ не проявляется какой-либо клинической картиной, но изменяет резистентность организма к иным факторам среды. Возможна кумуляция повреждающих эффектов, ведущая к срыву механизмов адаптации. Наиболее выраженные нарушения обнаруживаются при действии сверхвысоких частот; с понижением частоты при эквивалентной энергии излучения глубина ответных реакций уменьшается, но направленность их остается однотипной.

В развитии патологического процесса при действии ЭМИ в его первой фазе отражаются приспособительные реакции на основе усиления деятельности ЦНС, эндокринных желез и нейрогуморальной регуляции.

Вторая фаза процесса — охранительная, сопровождающаяся снижением уровня деятельности различных систем и постепенным истощением резервов. Для третьей фазы характерно развитие декомпенсации — вегетативно-сосудистых кризов. 
В целом соматические последствия радиоволнового воздействия с развитием соответствующего синдрома можно трактовать как болезнь системы регуляции.

В связи с отсутствием нозологической формы заболевания электромагнитной природы, при экспертизе профессиональных заболеваний следовало бы отдать приоритет наличию донозологического состояния как показателю нарушения нейроэндокринной регуляции, характерного для ЭМИ. 
Реакции организма при радиоволновых (как и при многих других) воздействиях направлены на поддержание гомеостаза и являются суммой эффектов непосредственного действия ЭМИ, реакций противодействия этим эффектам и более медленных, но сильных репаративных процессов (как производного от глубины повреждения и компенсаторных возможностей организма).

Все это и обусловливает неспецифичность картины расстройств ЭМ природы, и проявления болезни будут замаскированы признаками адаптивно-компенсаторного процесса.

Поэтому предпатологическая оценка должна получить новый критерий — донозологические состояния, а в оценке профессиональной патологии важнейшее место следовало бы отдать показателю общей заболеваемости. 
Истощение регуляции, угнетение синтетических и иммунных процессов в облученном организме в конечном итоге приведет к ослаблению его резистентности, повышенной общей и инфекционной заболеваемости и к другим, пока еще недостаточно подтвержденным, нарушениям здоровья.

Пониженная адаптация облученного организма к обычным факторам окружающей среды и производства также будет способствовать болезненным реакциям организма на раздражители любой природы. Кроме того, ЭМИ существенно изменяют характер и силу ответной реакции организма.

СВЧ-радиометрия

Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна.

Непосредственно из формулы Планка, при перепаде температуры относительно окружающей среды на 1 К она составляет всего 2 • 10 13 Вт/м2. Как заметил академик Ю.В. Гуляев, по своей интенсивности это соответствует свету свечи, помещенной на расстояние свыше 10 км.

Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабых электромагнитных полей этого диапазона частот, так называемых СВЧ-радиометров, можно измерить температуру в глубине тела человека.

Волны из тела человека принимают посредством контактной антенны — аппликатора.

Дистанционные измерения в этом диапазоне, к сожалению практически невозможны, так как волны, выходящие из тела, сильно отражаются обратно от границы тело-воздух.

Главная трудность при анализе измерений глубинной температуры по радиотепловому излучению на его поверхности состоит в том, что трудно локализовать глубину источника температуры. Для ИК-излучения эта проблема не возникает: излучение поглощается на глубине 100 мкм, так что его источником однозначно является поверхность кожи.

Радиоволны СВЧ-диапазона поглощаются на расстоянии, которое составляет несколько см.

Средняя глубина, с которой измеряется температура, определяется глубиной проникновения d. Она зависит от длины волны и типа ткани. Чем больше в ткани воды (электролита), тем с меньшей глубины можно измерить температур в жировой ткани с низким содержанием воды d = 4-8 см, а и мышечной ткани (с высоким содержанием воды) эта величина уменьшается до значений d = 1,5 — 2 см.

Оптимальными для измерения глубинной температуры являются радиометры с длиной волны в свободном пространстве X = 20 — 40 см: у более коротковолновых устройств глубина проникновения снижается до нескольких миллиметров, то есть они фактически, так же как и ИК-тепловизоры, измеряют температуру кожи, а у более длинноволновых радиометров (А, = 60 см) слишком велик размер антенны и мала пространственная разрешающая способность.

Хотя метод СВЧ-радиометрии измеряет среднюю по глубине температуру в теле человека, сейчас известно, какие органы могут менять температуру, и поэтому можно однозначно связать изменения температуры с этими органами.

Например, изменение температуры во время мышечной работы, очевидно, связано именно с мышечной тканью, изменения глубинной температуры головного мозга, которые достигают 1-2 К, определяются его корой.



Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *