Стационарное состояние живого организма

Состояние системы, при котором ее параметры не изменяются в течение длительного времени, но происходит обмен веществом и энергией с окружающей средой.

Стационарное состояние в живых организмах достигается путем взаимной компенсации всех процессов, связанных с поступлением, удалением и превращением веществ и энергии.

Св-ва стац. состояния системы: стремление системы к мин. ежесекундному приросту энтропии; определеннная внутр. стабильность и упорядоченность.

Принцип Ле-Шателье: если система устойчива, то при отклонении в системе возникают силы, стремящиеся вернуть ее в исходное положение.

Стационарное состояние и термодинамическое равновесие.

Стац. сосст — сост. системы при кот. ее параметры не изм. в течении длит. времени но происходит обмен веществом и энергией со средой.

ТД равновесие — сост. системы при кот. ее параметры не изм. и она не обменивается с окр. средой ни веществом ни энергией.

Различие между системами:

Термодинамическое равновесие Стационарное состояние
Отсутствие обмена с окр. средой веществом и энергией Непрерывный обмен с окр. средой веществом и энергией
Энтропия постоянна и соотв. max возможному в данных условиях значению Энтропия постоянна, но не равна max возможному в данных условиях значению
Полное отсутствие в системе каких-либо градиентов Наличие постоянных по величине градиентов
Не требуется затраты свободной энергии Необходимы постоянные затраты энергии
Система нереакционноспособна и не совершает работу против внешних сил В системе совершаются необратимые реакции, ее работоспособность постоянна и не равна нулю

Живой организм может изменить уровень стационарного состояния в результате воздействия окр. среды и при патологических процессах.

Одной из важнейших характеристик био. систем является устойчивость стационарных состояний, при отклонении системы от стационарного уровня в ней возникают силы, стремящиеся вернуть ее в первоначальное положение.

В момент смерти организм находится в сост. ТД равновесия

Уравнение Пригожина.

в стац. состоянии при фиксированных внеш. параметрах скорость продукции энтропии в открытой системе, обусловленная протеканием необратимых процессов, постоянна во времени и минимальна по величине:

diS/dt → min

Т.о. стац. состояние характеризуется мин. рассеянием энергии. В соответствии с теоремой Пригожина для поддержания стац. состояния тратится некоторое кол-во энергии, причем самое минимальное. Организм стремится работать на самом выгодном энергетическом режиме. При этом энтропия возрастает с минимальной скоростью.

Основные понятия и особенности кинетики биологических процессов.

базируются на общих теоретических положениях хим. кинетики, изучающей скорости хим. реакций. Фундаментальное понятие хим. кинетики — хим. реакция, представляющая собой совокупность актов перегруппировки межатомных связей.

Хим. реакции можно разделить на:

1) Гомогенныепротекают с одинаковой скоростью в любом элементарном объеме данной фазы;

2) гетерогенные— на границе раздела фаз, и скорость их определяется скоростью подачи реагирующих веществ на поверхности раздела фаз.

Катализаторыповышают скорость спонтанно протекающих реакций. Если вещество инициирует реакцию, оно называется инициатором, если ускоряет каталитическую реакцию, то его относят к активаторам. Соединения, понижающие скорость каталитической реакции или полностью подавляющие — ингибиторами.

Под кинетикой реакции понимают зависимость скорости реакции от концентрации реагирующих веществ, температуры и других параметров.

Реакции называются последовательными, если продукт одной из реакций является исходным веществом для другой. A B C.

Сопряженной называют реакцию, которая происходит при одновременном протекании другой реакции.

Цепная реакция — это самоподдерживающаяся химическая реакция, при которой первоначально появляющиеся продукты принимают участие в образовании новых промежуточных и конечных продуктов.

Параллельными называют совместно протекающие реакции, если, по крайней мере, одно исходное вещество этих реакций является общим.



Стационарные неравновесные состояния.

Термодинамика биологических процессов

Принцип Ле Шателье

Напомним, что состояние системы называется равновесным, если в этом состоянии все параметры системы имеют определенные значения и остаются при неизменных внешних условиях постоянными сколь угодно долго. Система может быть выведена из равновесия воздействием извне.

Процессам, нарушающим равновесие системы, противостоит внутренняя релаксация. Например, в случае разреженных газов внутренняя релаксация обусловлена столкновением между молекулами. Поэтому после прекращения внешнего воздействия система возвращается в равновесное состояние. Время, необходимое для такого возвращения, называется временем релаксации.

Если возмущающие процессы менее интенсивны, чем релаксационные, то в малых объемах системы наблюдается локальное равновесие.

Например, если газ поместить между плоскостями, нагретыми до разных температур, то система в целом не будет равновесной, температура системы в разных точках будет различной. Однако процесс теплопроводности достаточно медленный и в системе будут области с локальным равновесием. Локальное равновесие может наблюдаться и в случае медленного изменения внешнего воздействия для времен, бóльших времени элементарного релаксационного процесса, формирующего равновесие.

В сложной системе, состоящей из большого числа подсистем, возникает большое число связей между ними.

В такой системе из-за внутренних взаимодействий возникает эффект системности: появление большого количества новых свойств, которых нет у ее частей. На пути любой достаточно сложной системы к равновесию, которое характеризуется максимумом энтропии, встречаются обстоятельства, не позволяющие это сделать.

Такими обстоятельствами могут выступать граничные условия (например, постоянная разность температур на границах). В этом случае система с течением времени переходит в квазистационарное состояние. Таким образом, в неравновесной термодинамике появилось новое понятие стационарное (т.е.

не зависящее от времени) неравновесное состояние.

В стационарных неравновесных состояниях характеристики системы не зависят от времени, поэтому и энтропия от времени не зависит. Но энтропия все время возникает, поскольку потоки и силы в системе отличны от нуля.

Полная энтропия будет постоянной только при поступлении в систему извне отрицательной энтропии или негэнтропии, которая компенсирует производство энтропии внутри системы.

В стационарном неравновесном состоянии уменьшается производство энтропии. Теорема о минимуме производства энтропии в стационарном неравновесном состоянии, сформулированная Пригожиным, отражает внутреннюю устойчивость неравновесных систем, их своеобразную инерционность.

Устойчивость стационарных состояний с минимальным производством энтропии связана с принципом, сформулированным в 1884 г.

Ле Шателье и обобщенным в 1887 г. немецким физиком К. Брауном. Принцип Ле Шателье–Брауна в современной интерпретации означает, что система, выведенная внешним воздействием из состояния с минимальным производством энтропии, стимулирует развитие процессов, направленных на ослабление внешнего воздействия.

Принцип локального равновесия и теорема о минимуме производства энтропии в равновесных системах были положены в основу современной термодинамики необратимых процессов.

Предыдущая20212223242526272829303132333435Следующая

Дата добавления: 2016-01-26; просмотров: 816;

ПОСМОТРЕТЬ ЕЩЕ:

Стационарное состояние. Теорема Пригожина

Стационарным называют такое состояние открытой системы, при котором основные макроскопические параметры системы остаются постоянными. Необходимы различные стационарные состояния от равновесного состояния.

Отличительные признаки стационарного и равновесного состояния

Равновесное

Стационарное

1.

G и работоспособность системы минимальные.

1. G и работоспособность системы постоянны, но не минимальны.

2.

Стационарное состояние живого организма

Энтропия в системе максимальна.

1. Энтропия в системе постоянна, за счет равенства продукции и потока энтропии.

3.

Отсутствие градиентов в системе.

3. Наличие постоянных градиентов в системе.

 

 

В состоянии равновесия в системе прекращаются все процессы, кроме теплового движения молекул, при этом выравниваются все градиенты.

В стационарном состоянии идут химические реакции, диффузия, перенос ионов и другие процессы, но они так стабилизированы, что состояние системы в целом не изменяется.

В стационарном состоянии существуют градиенты между отдельными частями системы, но они сохраняют постоянные значения. Это возможно только при условии, что система из окружающей среды получает вещество и G , а отдает продукты реакции и выделяющееся тепло.

Термодинамическим условием стационарного состояния является равенство между продукцией энтропии, произведенной организмом, и потоком энтропии, то есть:

, тогда полное изменение энтропии равно 0 .

Термодинамика открытых систем позволяет вскрыть еще одну причину целесообразности стационарного состояния для биологической системы, которая сформулирована в теореме Пригожина:

 «В стационарном состоянии продукция энтропии имеет постоянное и минимальное из всех возможных значений, то есть»:

Теорема Пригожина показывает, что в стационарном состоянии диссипация Gпроисходит с меньшей скоростью, чем в любых других состояниях, стало быть, в стационарном состоянии G системы расходуется наиболее экономно и поэтому требуется минимальная компенсация ее затрат, то есть, КПД системы в стационарном состоянии максимален.

Необходимо отметить, что теорема Пригожина справедлива только для таких состояний, которые мало отличаются от стационарных.

В этом случае, скорости всех процессов выражаются линейными уравнениями (уравнения 1 порядка).

Теорема Пригожина дает термодинамические критерии эволюции линейным системам, которые формулируются следующим образом:

 «Открытая линейная система, если она не находится в стационарном состоянии, будет изменяться до тех пор, пока скорость продукции энтропии в ней не приобретет минимальное значение из всех возможных, то есть, пока величина диссипативная функции не примет минимальное значение».

Таким образом, второе начало термодинамики для живых организмов можно представить в следующем виде:

I, II, III — второе начало термодинамики для живых организмов.



Пригожин принципі

Предыдущая11121314151617181920212223242526Следующая

Пригожин принципі- тепе тең емес процестер термодинамикасы

Ашық системадағы қайтымсыз процестердің «Сызықтық термодинамикасының» негізін салушы ғалымдардың бірі И. Пригожин (бельгиялық физик, химик, 1947 ж.) «… системаның стационар күйі экстремальдық принциппен сипатталынады» деді.

Стационарное состояние

Кейіннен ол принцип «Пригожин теоремасы» болып қалыптасты: «Сыртқы параметрлері межеленген ашық системаның стационар күйіндегі энтропияның уақыт аралығындағы өзгерісі тұрақты, шамасы минимальды (болмашы, өте аз) болады».

Бұл теоремадан төмендегідей де қорытынды шығады.

Егер система, кейбір себептермен, стационар күйден ауытқыса, онда бұл процесс системаның энтропия шамасының өзгеріс жылдамдығы өте аз мәнге жеткенше жүреді

Тепе-теңдік емес термодинамикасында стационар күй ерекше орын алады.

Термодинамикалық тепе-теңдіктің жоқ болуына қарамастан жүйенің ұзақ уақыт бойына өзінің кейбір физикалық және химиялық қасиеттерін сақтап тұру қасиеті стационар күй деп аталады.

Стационарлық күй ашық жүйеге тән болады.

Жүйе стационарлық күйге ие болу үшін ол жүйеге сырттан зат және энергия келіп түсуі керек те, сонан кейін жүйеден сыртқа зат пен энергия шығып отыруы керек. Олай болса, биологиялық организм стационар күйде болады. Өйткені, биологиялық организм үнемі өзін қоршаған ортадан зат пен энергия алады және оларды қоршаған ортаға шығарып отырады.

Стационар күйде қайтымсыз процестер жүреді. Бұл қайтымсыз процестер энтропияның өсуіне әкеліп соқтырады. Осыған қарамастан биологиялық организмнің жалпы энтропиясы өзгеріссіз қалады.

Стационарлы күйдегі ішкі жүйенің энтропиясы қоршаған ортадағы энтропиямен теңеледі (орны толады). Сондықтанда жүйедегі жалпы энтропия өзгеріссіз қалады:

dS= dіS+ dеS=0

Ашық биологиялық жүйенің термодинамикасын негізін қалаушы–лардың бірі Берталанффи мұндай стационарлы күйді ағынды (проточный) тепе-теңдікті күй деп атады.

Мұндағы dіS-жүйедегі қайтымсыз процестердің әсерінен энтропияның өзгеруі; dеS-биологиялық жүйенің өзін қоршаған ортамен әсерлесуі нәтижесінде энтропияның өзгеруі.

Процестердің қайтымсыздығы энтропия өзгері–сінің өсуіне (dіS>0) әкеліп соқтыратын болса, күйдің стационарлығы энтропияның өзгеріссіз қалуына әкеліп соқтырады, яғни dS=0.

Олай болса dеS =dS-dіS<0 екенін байқар едік. Бұл теңсіздік биологиялық жүйеге келіп түсетін заттар энтропиясының (dеS) жүйеден шығып кететін заттардың энтропиясынан (dіS) кем екенін көрсетеді.

Сонымен биологиялық жүйе үшін энтропия өзі (S-const) тұрақты болғанмен, оның (жүйесінің) ортадан алатын энтропиясының өзгеруі dеS<0, ал жүйенің ортаға шығарып жіберетін затының энтропиясының өзгеруі dіS>0 болады.

Осыдан биологиялық организм мен қоршаған ортаның энтропиясы өскенімен, жалпы организмнің (биологиялық жүйенің) энтропиясы тұрақты болып қалады (S-const). (1) формуланы түрлендірсек: dS= dіS+ dеS

dt dt dt

Бұл формуланы Пригожин формуласы деп атайды.

Бұл өрнек организм мен сыртқы ортаның энтропия алмасуының теңдігін көрсетеді. Ал стационар күй үшін S-const, dS/Δt=0 екенін ескерсек, онда

dіS=- dеS

dt dt

Пригожин формуласынан көріп отырғанымыздай стационар күй үшін энтропия өзгерісі нөлге тең болмайды.

Бұдан стационар күйде (яғни биологиялық жүйеде) заттар алмасуы үздіксіз болып тұрады.

Ашық жүйелердің стационар күйін тұрақты және тұрақты емес деп бөлуге болады.

Тұрақты стационар күй энтропия өзгерісі жылдамдығының ең аз мәніне ие болады. Тірі организм тұрақты стационар күйдің бір дәлелі бола алады. Егер сыртқы ортаның өзгеруіне (айталық қысымның, температураның) байланысты организм стационарлық күйде тұра алатын болса, онда организм осы ортаға үйренеді де (адаптацияланады) өмір сүре береді.

Ал қоршаған ортаның өзгеруіне байланысты организм стационарлық күйден ауытқып кететін болса, онда организм өмір сүруін тоқтатады.

Пригожин өрнегі организм мен сыртқы ортаның энтропия алмасуының теңдігін көрсетеді.Ал стационар күй үшін S=conct, ds/dt =0 екенін еске алсақ 〖ds〗_i/dt=- ds/dt бұдан көріп отырғанымыздай стационар күй үшін энтропия өзгерісі нөлге тең болмайды,стационар күйде заттар алмасуы үздіксіз жүріп отырады.

Сыртқы өлшемдер анық болған кездегі стационарлық куйдегі жүйедегі энтропияның өну жылдамдығын уақыт бойынша тұрақты және көлем боййынша кіші.

Егер жүйе қандайда бір себеппен стационарлық күйден шығарылған болса энтропия өсуінің үлестік жылдамдығы ең кіші мәнге ие болмайынша өзгере береді. Тұрақты жағдайда Пригожин принципі орындалады. Биожүйеде энтропия бағасы оң және минимальді. Тек қана тұрақты жағдайда орындалады.

Предыдущая11121314151617181920212223242526Следующая

Термодинамика биологических процессов

Стационарное состояние живых ТД систем, его отличие от ТД равновесия; баланс энтропии и свободной энергии. Условия перехода живых систем на новый стационарный уровень.

Предыдущая12345678Следующая

(+ см вопрос 17)

Стационарное сотояние:

Зависит от 3-х параметров: -S (энтропия), -U (своб.

E), -t (время).

Стац. сост. – сост., когда параметры системы (U, S) с теч. времени остаются неизменными, но происходит обмен в-вом и Е, т.е. сост. сист. при кот. не происх. изм. ТД параметров.

Изолированные сист.: ∆S=0 или >0.

Для равновесного сост.

S стремится к мах, U=0. Стац. сост. отличается тем, что S ≠ мах, а является постоянной величиной, S=const, U не равняется 0, U=const. Ежесекундный прирост энтропии стремится к min. Любая живая система может находиться только в стац.

сост. Если достигнуто состояние ТД равновесия — это уже не живая система. Качество стационарного состояния может быть различным.

В открытых системах:

S состоит из двух показателей.

Si – внутри самой сист., S — самой системы, Se – внешняя среда.

dS=dSi+dSe (d – это ∆ — это изменение)

Когда dSe > dSi и dSe < 0, тогда dSe < 0 – «нек» энтропия, негативная, в эволюц. плане деградирует система, напр.

паразиты.

В случае изомерной живой системы — она не обменивается Е и в-вом, т.е. только dS=dSe

Прирост S — необратимость протекания процесса.

dSe<0: возможно 3 ситуации

1.Приток внешней энтропии отрицателен и по модулю превышает изменения внутренней Si dS<0

нервный импульс.

dSe<0, по мoдyлю=dSi

dS=O

Характерно для стационарного состояния системы dS=dSi+dSe=O

3. dSe<0 и по мoдyлю <dSi. dS>0.

Состоянию ТД равновесия — характерно мах значение S (S=max), U=0, т.е. Е, которая расходуется на совершение А.

Сходство: стац. и равновесное состояния не зависят от времени.

Отличия стац. сост. от равновесия (из конспекта):

1) своб. Е (∆G) в стац. сост. есть величина постоянная во времени и не равна 0.

В ТД равн. ∆G=const, но ∆G =0 => открытые сист., если вывести из стац. сост. могут совершать работу; при ТД равновесии не способны совершать работу.

2) энтропия.

В стац. сост. =const, но она не max. (∆G) ∆S ≠ max = const.

3) !!! в стац. сост. проявляется кинетический параметр (фактор) (изменение энтропии во времени) dS/dt = dSi/dt + dSe/dt.

Стационарное состояние:

* постоянный обмен энергией с окружающей средой

* постоянно тратится свободная энергия на поддержание состояния

* т/д потенциалы постоянны, G и F не равны 0

* энтропия постоянна, но не максимальна

* градиенты присутствуют

Термодинамическое равновесие

* отсутствует поток вещества и энергии в окружающую среду и обратно

* на поддержание этого состояния не затрачивается свободная энергия

* работа способности системы равна 0, т/д потенциалы равны 0

* энтропия максимальна

* в системе отсутствуют градиенты

Переход на новый стац.

уровень:

2 пути: 1) «овершот» — по нему переходят живые организмы при изм внеш. усл. (приспособление). График.

Нижняя стрелочка – это старый стац. уровень.

Верхняя стрелочка – это новый стац. уровень.

2) «ложный старт» — усиление или уменьшение О2, выращивание лука с О2 и без. График. С О2 – аэробный распад углеродов. Без О2 – обмен в-в переходит на анаэробный путь.

А если потом снова дать О2 – то получится график 2 (то что обведено кружочком – там осущ-ся уничтожение продуктов анаэробного пути). Пример для чела: пока не расщепится молочная к-та осуществлять работу дальше нельзя.

17. Теорема Пригожина и направленность эволюции биосистем.

Энтропия и биологический прогресс.

(+ см вопрос 16)

Стац. сост. хар-ся min ежесекундным приростом энтропии (благодаря этому происходит эволюция).

Теорема: при постоянных внеш. усл. в системе, находящейся вблизи положения ТД равновесия в стац. сост., скорость возрастания энтропии, за счёт необходимости внутр. процессов, принимает постоянное минимальное значение отличное от нуля.

Или: В стационарных состояниях при фиксированных внешних параметрах локальная продукция энтропии в открытой т/д системе стремится к минимальному значению.

Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии.

Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Величина, кот это всё характеризует:

β= T* (dS/dt), где β – диссипативная фукнкция. β>0, min. С этим связан Критерий эволюции открытых систем: ∆β/dt < 0

Механизмы саморегуляции систем

Функционируют по принципу обратной связи.

Обратная связь – это понятие, обозначающее влияние выходного сигнала системы на ее рабочие параметры. Различают положительную и отрицательную. "–" чаще встречается в биосистемах, направлена на снижение влияния выходного сигнала на рабочие параметры системы. "+" усиливает влияние выходного сигнала, в результате чего система может выходить из данного состояния.

Гомеостаз – постоянство многих параметров.

Предыдущая12345678Следующая



Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *