Селекция микроорганизмов кратко


Селекция микроорганизмов. Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия основана на выделении нужного гена из генома одного организма и введении его в геном другого организма. «Вырезании» генов проводят с помощью специальных «генетических ножниц», ферментов — рестриктаз, затем ген вшивают в вектор — плазмиду, с помощью которого ген вводится в бактерию (рис. 342). Вшивание осуществляется с помощью другой группы ферментов — лигаз. Причем вектор должен содержать все необходимое для управления работой этого гена — промотор, терминатор, ген-оператор и ген-регулятор. Кроме того, вектор должен содержать маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Затем вектор вводится в бактерию, и на последнем этапе отбираются те бактерии, в которых введенные гены успешно работают.

Излюбленный объект генных инженеров — кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста — соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Рис. 342. Образование рекомбинантных плазмид.

Второй путь — синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

© Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков, или замещении одной пары гомологичных хромосом на другую. На этом основаны методы получения замещенных и дополненных линий, с помощью которых в растениях собираются признаки, приближающие к созданию «идеального сорта».

© Очень перспективен метод гаплоидов, основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 — 3 года вместо 6 — 8 летнего инбридинга.

© Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии связаны с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение.

1. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества.

2. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

3. Продолжается работа по гибридизации клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам — картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре.

4. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

5. Возможно слияние эмбрионов на ранних стадиях, создание химерных животных. Таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

Дата добавления: 2016-05-30; просмотров: 3320;

Похожие статьи:

Селекция микроорганизмов

Микроорганизмы используются в медицине и пищевой промышленности. С их помощью получают антибиотики, витаминные препараты, кормовые белки. Колонии микроорганизмов выращивают из одной особи, которая быстро размножается бесполым путем, образуя штамм.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых для человека веществ.

В биотехнологии применяют бактерии, грибы, клетки растительных тканей. Их выращивают на питательных, ферментных средах в специальных биореакторах.

В культуре тканей проводят гибридизацию клеток, изучают раковые клетки и особенности их размножения, проверяют устойчивость к различным вирусам. Методами генной инженерии удается перестроить генотип клетки для получения специальных белков, например, инсулина, интерферона и т.д.

Из более чем 100 тыс.

видов известных в природе микроорганизмов человеком используется несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние десятилетия, когда были установлены многие генетические механизмы регуляции биохимических процессов в клетках микроорганизмов.

Многие из них продуцируют десятки видов органических веществ — аминокислот, белков, антибиотиков, витаминов, липи-дов, нуклеиновых кислот, ферментов, пигментов, Сахаров и т.

п., широко используемых в разных областях промышленности и медицины. Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, молочных продуктов, виноделие и многие другие, основаны на деятельности микроорганизмов.

Методами современной селекции микроорганизмов интенсивно исследуются возможности получения важных в хозяйственном отношении веществ — органических кислот, спиртов, кетонов.

Селекция направлена на создание генетических линий (штаммов), обеспечивающих максимальную производительность. Получены плесневые грибки, продуцирующие в тысячи раз больше антибиотиков, чем исходные формы.

С целью увеличения эффективности селекции диапазон Наследственной изменчивости исходных организмов иногда удается расширить применением методов искусственного мутагенеза — облучением, воздействием специальных химических веществ.

Микробиологическая промышленность предъявляет к продуцентам различных соединений жесткие требования, которые важны для технологии производства; это высокая скорость роста, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению посторонними микроорганизмами.

Научная основа этой промышленности — умение создавать микроорганизмы с новыми, заранее определенными генетическими свойствами и умение использовать их в промышленных масштабах.

Дрожжи успешно выращивают на отходах нефтепродуктов, гидролизатах древесины, на метаноле, этаноле, метане. В дрожжах содержится до 60% белков. Использование их в качестве кормового белка позволяет получать дополнительно до 1 млн. т. мяса в год. Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот (не синтезирующихся в организмах животных).

В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т. синтезированной микробиологическим путем аминокислоты лизина экономит десятки тонн кормов.

Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей:

1) у селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;

2) более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

3) простота генетической организации бактерий: значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют.

Эти особенности накладывают свой отпечаток на выбор методов селекции микроорганизмов, которые во многом существенно отличаются от методов селекции растений и животных.

Например, в селекции микроорганизмов обычно учитываются их естественные способности синтезировать какие-либо полезные для человека соединения (аминокислоты, витамины, ферменты и др.). В случае использования методов генной инженерии можно заставить бактерии и другие микроорганизмы продуцировать те соединения, синтез которых в естественных природных условиях им никогда не был присущ (например, гормоны человека и животных, биологически активные соединения).

Природные микроорганизмы, как правило, обладают низкой продуктивностью содержащихся в них веществ, которые интересуют селекционера.

Для использования же в микробиологической промышленности нужны высокопродуктивные штаммы, которые создаются различными методами селекции, в том числе отбором среди природных микроорганизмов.

Отбору высокопродуктивных штаммов предшествует целенаправленная работа селекционера с генетическим материалом исходных микроорганизмов.

В частности, широко используют раз-личные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например,конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм Pseudomonas putida, способный утилизировать углеводороды нефти.

Часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериофагов), трансформации (перенос ДНК, изолированной из одних клеток, в другие) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся в плазмиде, а не в хромосоме.

Поэтому увеличение числа этих плазмид путем амплификации позволяет существенно повысить выход антибиотиков.

Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания высокопродуктивных штаммов.

Вероятность возникновения мутаций у микроорганизмов (1×10-10— 1 х 10-6) ниже, чем у всех других организмов (1×10-6—1×10-4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и сделать это можно быстро.

Для выявления мутаций служат селективные среды, на которых способны расти мутанты, но погибают родительские клетки дикого типа.

Проводится также отбор по окраске и форме колоний, скорости роста мутантов и диких форм и т. д.

Отбор по продуктивности (например, продуцентов антибиотиков) осуществляется по степени антагонизма и угнетения роста чувствительного штамма. Дня этого штамм-продуцент высевается на «газон» чувствительной культуры. По размеру пятна, где отсутствует рост чувствительного штамма вокруг колонии штамма-продуцента, судят о степени его активности (в данном случае антибиотической).

Для размножения, естественно, отбираются наиболее продуктивные полонии. В результате селекции производительность продуцентов удается увеличить в сотни и тысячи раз.

Лекция № 3 Совершенствование биологических объектов методами мутагенеза и селекции

Например, путем комбинирования мутагенеза и отбора в работе с грибом Penicillium был увеличен выход антибиотика пенициллина примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Важным подходом в селекционной работе с микроорганизмами является получение рекомбинантов путем слияния протопластов, или гибридизации, разных штаммов бактерий.

Слияние протопластов позволяет объединить генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.



К микроорганизмам относятся прежде всего прокариоты (бактерии, актиномицеты, микоплазмы и др.) и одноклеточные эукариоты — простейшие, дрожжи и др.

Из более 100 тыс. видов, известных в природе микроорганизмов, в хозяйственной деятельности человека используется уже несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние 20—30 лет, когда были установлены многие генетические механизмы регуляции биохимических процессов, происходящих в клетках микроорганизмов.

Микроорганизмы играют исключительно важную роль в биосфере и в жизни человека.

Многие из них продуцируют десятки видов органических веществ — аминокислот, белков, антибиотиков, витаминов, липидов, нуклеиновых кислот, ферментов, пигментов, сахаров и т, п., широко используемых в разных областях промышленности и медицины.

Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органических кислот, виноделие и многие другие, основаны на деятельности микроорганизмов.

Микробиологическая промышленность предъявляет к продуцентам различных соединений жесткие требования, которые важны для технологии производства: ускоренный рост, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению микроорганизмами.

41.4. Селекция микроорганизмов. Биотехнология

Научная основа этой промышленности — умение создавать микроорганизмы с новыми, заранее определенными генетическими свойствами и умение использовать их в промышленных масштабах.

Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей:

  • у селекционера имеется неограниченное количество материала для работы — за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;
  • более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что дозволяет выявить любые мутации уже в первом поколении;
  • организация генома бактерий более проста: меньше генов в геноме, менее сложна и генетическая регуляция взаимодействия генов.

Эти особенности накладывают свой отпечаток на методы селекции микроорганизмов, которые во многом существенно отличаются от методов селекции растений и животных.

Например, в селекции микроорганизмов обычно используются их естественные способности синтезировать какие-либо полезные для человека соединения (аминокислоты, витамины, ферменты и др.). В случае использования методов генной инженерии можно заставить бактерии и другие микроорганизмы продуцировать те соединения, синтез которых в естественных природных условиях им никогда не был присущ (например, гормоны человека и животных, биологически активные соединения).

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, которые интересуют селекционера.

Для использования в микробиологической промышленности нужны высокопродуктивные штаммы, которые создают различными методами селекции, в том числе отбором среди, природных микроорганизмов.

Отбору высокопродуктивных штаммов предшествует целенаправленная работа селекционера с генетическим материалом исходных микроорганизмов.

В частности, широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм, способный утилизировать углеводороды нефти.

Часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериофагов), трансформации (перенос ДНК, изолированной из одних клеток, в другие) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся в плазмиде, а не в основной хромосоме.

Поэтому увеличение путем амплификации числа этих плазмид позволяет существенно повысить производство антибиотиков.

Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания исходного материала в селекции. Вероятность (частота) возникновения мутаций у микроорганизмов (10-10 — 10-6) ниже, чем у всех других организмов (10-6 — 10-4).

Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и быстро.

Для выделения мутаций служат селективные среды, на которых способны расти мутанты, но погибают исходные родительские особи дикого типа.

Проводится так же отбор по окраске и форме колоний, скорости роста мутантов и диких форм и т. д.

Отбор по продуктивности (например, продуцентов антибиотиков) осуществляется по степени антагонизма и угнетения роста чувствительного штамма. Для этого штамм-продуцент высевается на «газон» чувствительной культуры. По размеру пятна, где отсутствует рост чувствительного штамма вокруг колонии штамма-продуцента, судят о степени активности (в данном случае антибиотической).

Для размножения, естественно, отбираются наиболее продуктивные колонии. В результате селекции производительность продуцентов удается увеличить в сотни-тысячи раз. Например, комбинируя мутагенез и отбор в работе с грибом Penicillium, выход антибиотика пенициллина увеличили примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Роль микроорганизмов в микробиологической, пищевой промышленности, в сельском хозяйстве и других областях трудно переоценить. Особенно важно отметить то, что многие микроорганизмы для производства ценных продуктов используют отходы промышленного производства, нефтепродукты и тем самым производят их разрушение, предохраняя от загрязнения окружающую среду.

Реферат

Реферат Селекция микроорганизмов.

Работа добавлена на сайт bukvasha.ru: 2015-10-28

Селекция микроорганизмов.
Согласно общепринятому определению, Генетика) микроорганизмов, раздел общей генетики, в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др.

микроорганизмы. До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются Менделя законы и хромосомная теория наследственности.

С начала 40-х гг. микроорганизмы становятся объектом интенсивных генетических исследований. Именно на них были решены многие кардинальные вопросы современные генетики.

Так, первое указание на то, что материальным носителем наследственности служит дезоксирибонуклеиновая кислота (ДНК (было получено в опытах на пневмококках (американские генетики О. Т. Эйвери, К.

Мак-Леод и М. Маккарти). Примерно в то же время были начаты интенсивные генетические исследования на хлебной плесени — нейроспоре. Изучение многочисленных биохимических мутантов нейроспоры (Дж. У. Бидл и Э. Л. Тейтем США привело к установлению очень важного положения: "один ген — один фермент" (ныне это положение более точно формулируется так: "один ген — одна полипептидная цепь"). Генетические (исследования микроорганизмов особенно интенсивно стали развиваться после того, как американские генетики С.

Лурия М. Дельбрюк показали на кишечной палочке (Escherichia coli), что и бактерии подчиняются мутационным закономерностям (см. Изменчивость Мутации Ранее существовавшее представление об адекватной, адаптивной изменчивости у бактерий возникло вследствие методической ошибки, заключавшейся в изучении культуры как единицы изменчивости.

Был предложен новый принцип изучения изменчивости у бактерий — клональный анализ, т. е. изучение потомства одной клетки — родоначальницы клона. Важной вехой в развитии Г. м. явился разработанный американскими генетиками Дж. и Э. Ледербергами метод реплик, или отпечатков, позволивший доказать, что мутации возникают у бактерий независимо от условий культивирования, и, кроме того, значительно упростивший приёмы отбора вариантов микроорганизмов с желаемыми свойствами. Оказалось, что в больших популяциях бактериальных клеток мутации возникают спонтанно.

В 1946 был открыт половой процесс у бактерий (конъюгация), что позволило применить для их исследования генетический анализ.

Лекция № 25. Селекция микроорганизмов. Биотехнология

В результате установлены наличие у бактерий рекомбинации, существование у них генетических групп сцепления и построены генетические карты их хромосом. Почти одновременно был открыт парасексуальный процесс грибов (Г. Понтекорво Великобритания), что расширило возможности генетического анализа грибов, не имеющих полового цикла размножения.

Вскоре в генетические исследования были вовлечены бактериофаги и др. вирусы (в частности, вирус табачной мозаики — ВТМ). Был открыт эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага — генетической трансдукция, что положило начало изучению генетических взаимоотношений в системе "фаг — бактерия" (Дж.

Ледерберг, Н. Зиндер, США (см. Вслед за тем была обнаружена рекомбинация у фагов (А. Херши и М. Дельбрюк, США (смЕсли использование бактерий в качестве объекта генетических исследований резко повысило разрешающую способность генетическиого анализа, то благодаря фагам удалось перейти к изучению явлений наследственности на молекулярном уровне.

Большое значение имели исследования ВТМ (немецкие генетики Г. Шустер и А. Гирер), позволившие вызвать генетический эффект в опытах с чистой рибонуклеиновой кислотой (РНК (которая сохраняла инфекционность и при нанесении на листья табака вызывала в клетках образование полноценных частиц ВТМ. Исходя (см. из общих принципов исследования генетических процессов у микроорганизмов, для каждой группы разработаны специальные методы изучения с учётом их особенностей.

Генетические) механизмы у грибов и водорослей, сохранивших половой процесс, имеют ряд особенностей. Главная из них состоит в том, что продукты мейоза (споры) остаются соединёнными в определенном порядке, и после раздельного высева этих спор можно непосредственно изучать генотип каждого продукта мейоза.

Этот метод, называемый тетрадным анализом, дополняет статистические методы изучения процесса расщепления. Применение генетич??????? еского анализа к организмам, у которых отсутствует половой процесс, стало возможным после открытия у них парасексуальных процессов, отличающихся большим разнообразием. Так, у несовершенных грибов при срастании гиф, принадлежащих двум генетически различным штаммам, происходит объединение и затем слияние двух гаплоидных ядер в одно диплоидное; в этой системе изредка возможен обмен генетическим материалом.

Особенность полового процесса у бактерий состоит в том, что в клетку-реципиент передаётся, как правило, только часть генетического материала из клетки-донора, в результате чего образуется частично диплоидная зигота (т. н. мерозигота). У бактерий известно несколько механизмов передачи генетического материала.

Наиболее (см. Наиб) совершенная форма полового процесса у бактерий — конъюгация, детально изученная у кишечной палочки. Конъюгация (см. Конъюгация) происходит при непосредственном контакте между двумя клетками, если в одной из них присутствует специфический половой фактор, или фактор скрещиваемости (фертильности, плодовитости), половой фактор (см. Эписомы (см. Эписомы)) содержит ДНК (см.

ДНК) и может существовать в клетке либо автономном, либо в интегрированном состоянии (включенным в первом случае при конъюгации в клетку-реципиент переходит только половой фактор. Во втором случае половой фактор способствует направленному переносу генетического материала из клетки-донора в клетку-реципиент.

Как правило, при этом происходит передача только части генома донора и лишь крайне редко передаётся вся хромосома донора вместе включенным в неё половым фактором. Между фрагментом донорной ДНК (см. ДНК) и ДНК (см. ДНК) реципиента может произойти обмен гомологичными генетическими участками — кроссинговер, приводящий к возникновению рекомбинантов, т.

е. клеток с изменённым сочетанием признаков. Генетический (см. Ген) анализ рекомбинантов кишечной палочки позволил установить у неё существование одной группы сцепления, определить линейное расположение большого числа генов в её хромосоме и построить кольцевую генетическую карту (см. Генетические (см. Ген) карты хромосом). Перенос (см. Перенос) генетического материала при конъюгации — строго ориентированный процесс, при котором последовательность передачи генов (а значит, и вероятность их участия в кроссинговере) целиком зависит от расположения генов в хромосоме и точки интеграции (включения) полового фактора.

При переходе полового фактора в автономное состояние гены, расположенные на хромосоме рядом с точкой интеграции, могут объединиться с половым фактором и в дальнейшем передаваться с ним как единое целое, превращая клетки-реципиенты в диплоиды по данному генетическому участку.

Этот процесс переноса генов совместно с половым фактором, называется сексдукцией, также может привести к возникновению рекомбинантов. Др. механизм возникновения рекомбинантов у бактерий — трансдукция — осуществляется при посредстве т. н. умеренных бактериофагов, которые способны к особому виду симбиоза с бактериями — лизогении.

В лизогенных бактериях ДНК (см. ДНК) умеренного фага интегрирована с ДНК (см. ДНК) бактериальной клетки и реплицируется одновременно с ней. Такая скрытая форма присутствия фага (профаг) может сохраняться в течение многих клеточных поколений, однако изредка профаг переходит в вегетативное состояние (т. е. начинает размножаться) и разрушает бактерию. При этом возможны захват небольшого фрагмента ДНК (см. ДНК) клетки-хозяина и последующий его перенос в др. клетку, в которой перенесённый участок генома может вступить в генетический обмен с гомологичной областью клетки-реципиента.

Обычно при трансдукции прогены, расположенные в непосредственной близости от места локализации профага в хромосоме бактерии. Однако некоторые фаги осуществляют трансдукцию, при которой любой участок генома бактерии с равной вероятностью может быть перенесён в др.

клетку. Иногда сам процесс лизогенизации, т. е. включения умеренного фага в геном бактерии, может сопровождаться приобретением клеткой новых свойств (см. Лизогенная конверсия (см.

Лизогенная конверсия)), например вирулентности. Ещё один тип полового процесса у бактерий, называемый трансформацией, — перенос генетического материала без посредства полового фактора или умеренного бактериофага с последующим возникновением рекомбинантов (вследствие генетического обмена между проникшим в клетку фрагментом ДНК (см. ДНК) и ДНК (см. ДНК) клетки-реципиента).

Особенности генетических механизмов у вирусов бактерий — бактериофагов- делают их весьма удобной моделью для изучения воспроизведения и функционирования генетического материала. Они (см.

Они) очень просто устроены, быстро размножаются и имеют очень короткий жизненный цикл; поэтому генетика бактериофагов, в особенности фагов Т2, Т4 и l, исследована весьма детально. Бактериофаги (см. Бактериофаги) скрещивают, заражая бактерии сью двух или нескольких мутантов фага.

В этом случае, кроме исходных фаговых частиц, появляются рекомбинанты с измененными сочетаниями признаков. С помощью рекомбинационного анализа удалось построить генетические карты для ряда бактериофагов. Оказалось, что молекула ДНК (см.

ДНК) фага является его хромосомой. Изучение тонкой структуры гена, проведённое на фаге Т4 (С. Бензер, США (см. США)), показало существование большого числа участков внутри гена, способных изменяться (мутировать) с разной частотой под действием различных мутагенов.Генетика (см.

Генетика) (см. Ген) вирусов животных и растений в значительной мере основывается на успехах в области генетики бактериофагов, но из-за технических трудностей еще не получила достаточного развития.

Возможность получения рекомбинантов была показана у ДНК (см. ДНК)-содержащих вирусов группы оспы — осповакцины (при шанном заражении клеток различными представителями этой группы), у вируса герпеса (между различными вариантами этого вируса), а также, между обезьяньим опухолеродным вирусом SV40 и различными представителями аденовирусов.

У РНК (см. РНК)-содержащих вирусов животных показана возможность получения рекомбинантов между мутантами вируса ящура и полиомиелита, а также между различными вариантами вируса гриппа. Последнее (см. Послед) открытие имеет особое значение, т. к.показывает возможные пути изменчивости этого вируса в природе. Из вирусов растений лучше всего изучен вирус табачной мозаики (ВТМ). В частности, полностью расшифрована последовательность аминокислот в белке ВТМ; удалось установить характер аминокислотных замещений, возникающих в белках оболочки у разных мутантов ВТМ.

Работы, выполненные на ВТМ, явились важным этапом в изучении как механизма мутагенеза, так и природы генетического кода.В связи с развитием новой отрасли народного хозяйства — микробиологической промышленности — возникла прикладная Г.

м., называется также селекцией и микроорганизмов. В сферу исследований были вовлечены новые формы микроорганизмов: пенициллы (Penicil humchrysogenum), актиномицеты (Actinomyces streptomycini, Act. rimosus и др.), актинофаги. У пенициллов и аспергиллов открыт парасексуальный процесс, у актиномицетов изучен механизм рекомбинации, открыты генетическая рекомбинация у актинофагов, генетическая трансдукция у актиномицетов.

Проведены обширные исследования индуцированной изменчивости количественных признаков у актиномицетов.В Советском Союзе в работе по селекции микроорганизмов применяются такие генетические методы, как получение индуцированных мутаций, гибридизация и заражение актиномицетов актинофагами.

В итоге выведены высокоактивные штаммы, позволившие во много раз увеличить производство антибиотиков, аминокислот, витаминов и др. биологически активных веществ.В связи с возрастающим значением Г. м. и необходимостью развития микробиологической промышленности в 1968 в Москве был организован Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Главмикробиопрома, ставший ведущим научным центром в этой области.

Проблемы генетики и селекции микроорганизмов разрабатываются и в др. научных учреждениях Москвы (Институт) эпидемиологии и микробиологии им. Н.

Ф. Гамалеи АМН ССС), институт общей генетики и институт атомной энергии им. И. В. Курчатова АН ,Ленинграда) (Физико-технический институт () им. А.

Ф. Иоффе АН СССР), кафедра генетики ЛГУ), Киева), Еревана и др. Г. м. сыграла важную роль в развитии современный генетики, дополнив ряд положений генетики высших организмов. Г. м., в свою очередь, стала основой для развития молекулярной генетики. Лит.: Хэйс У., бактерий и бактериофагов, пер. с англ., М., 1965; Гольдфарб Д. М., Введение в генетику бактерий, М., 1966; Захаров И. А. и Квитко К. В. Генетика (см. микроорганизмов, Л., 1967; Алиханян С.

И., Современная генетика, М., 1967, его же, Селекцияпромышленных микроорганизмов, М., 1968; Браун (В., Генетика (см. микроорганизмов, Л., 1967; Алиханян С. И., Современная генетика, М., 1967; его же.

Селекцияпромышленных микроорганизмов М., 1968; Браун , Генетика бактерий, пер. с англ., М., 1968; Генетические основы селекции микроорганизмов, М., 1969.? С. И. Алиханян), А. Н. Майсурян.

Пенициллиновая ме­тодика селекции

Мы рассмотрим один из этих способов — пенициллиновую ме­тодику селекции микроорганизмов.

Эта методика основана на специфической особенности действия антибиотика пенициллина на чувствительные к нему микроорганизмы. Он убивает все клетки, активно совершающие обмен веществ, и не оказывает летального действия на клетки, находящиеся в состоянии анабиоза (что у ауксотрофных микроорганизмов имеет место при отсутствии в пи­тательной среде необходимых для них ростовых веществ).

Кратко эта методика может быть описана следующим образом.

Чувствительные к пенициллину прототрофные микроорганизмы после обработки их мутагенными факторами высевают в жидкую минимальную питательную среду, в которую добавлен пеницил­лин в летальной для них концентрации, и выдерживают в течение 24 ч в термостате при оптимальной для них температуре. За этот срок все способные совершать обмен веществ и размножаться на этой среде прототрофные микроорганизмы умерщвляются пени­циллином, в то время как ауксотрофные мутанты, неспособные совершать обмен веществ из-за отсутствия необходимых для них веществ, находятся в состоянии анабиоза и сохраняют жизнеспо­собность.

После удаления пенициллина микроорганизмы высева­ют в чашки Петри с плотной полной питательной средой, где со­хранившие жизнеспособность клетки ауксотрофных мутантов де­лятся и дают начало колониям, которые состоят из клеток, потерявших способность к синтезу одного из веществ (т.

е. из кле­ток ауксотрофных мутантов). От этих колоний делают отсевы в пробирки с полной питательной средой, а потом проверяют обра­зующиеся в пробирках культуры при помощи рутинной методики, в каких именно веществах они нуждаются.

1. Реферат Коммерческие банки и их роль в формировании денежной массы
2. Реферат Финансы коммерческих организаций 2
3. Реферат на тему Нило Столобенская пустынь
4. Реферат Шульц, Михал
5. Кодекс и Законы Брачный договор 8
6. Реферат на тему Средства физической подготовки и спорта в профилактике наркомании
7. Сочинение на тему Москва в творчестве А С Пушкина
8. Реферат на тему Інформаційне забезпечення маркетинга на підприємстві
9. Реферат на тему Beethove Essay Research Paper B Ludwig van
10. Контрольная работа Социальный менеджмент

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *