Проводниковый отдел кожного анализатора


Двигательный (кинестетический) анализатор

Двигательный, или кинестетический (проприоцептивный), анализатор обеспечивает формирование так называемого мышечного чувства при изменении напряжения мышц, их оболочек, суставных сумок, связок, сухожилий. В мышечном чувстве можно выделить три составляющих: чувство положения, когда человек может определить положение своих конечностей и их частей относительно друг друга; чувство движения, когда, изменяя угол сгибания в суставе, человек осознает скорость и направление движения; чувство силы, когда человек может оценить мышечную силу, нужную для движения или удерживания суставов в определенном положении при подъеме или перемещении груза. Наряду с кожным, зрительным, вестибулярным двигательный анализатор оценивает положение тела в пространстве, позу, участвует в координации мышечной деятельности.

Периферический отдел представлен проприорецепторами, расположенными в мышцах, связках, сухожилиях, суставных сумках, фасциях. К ним относятся мышечные веретена, тельца Гольджи, тельца Пачини, свободные нервные окончания.

Мышечное веретено представляет собой скопление тонких коротких поперечно-полосатых мышечных волокон, которые окружены соединительнотканной капсулой. Эти волокна получили название интрафузальных, в отличие от обычных мышечных волокон, которые составляют основную массу мышц и называются экстрафузальными, или рабочими, волокнами. Мышечное веретено с интрафузальными волокнами расположено параллельно экстрафузальным, поэтому возбуждаются при расслаблении (удлинении) скелетной мышцы.

Тельца Гольджи находятся в сухожилиях. Это гроздевидные чувствительные окончания, достигающие у человека 2 – 3 мм в длину и 1 – 1,5 мм в ширину. Тельца Гольджи, располагаясь в сухожилиях, включены относительно скелетной мышцы последовательно, поэтому они возбуждаются при ее сокращении вследствие натяжения сухожилия мышцы. Рецепторы Гольджи контролируют силу мышечнюго сокращения, т.е. напряжения.

Тельца Панины представляют собой инкапсулированные нервные окончания, локализуются в глубоких слоях кожи, в сухожилиях и связках, реагируют на изменения давления, которое возникает при сокращении мышц и натяжении сухожилий, связок и кожи.

Проводниковый отдел двигательного анализатора представлен нейронами, которые располагаются в спинальных ганглиях (первый нейрон). Отростки этих клеток в составе пучков Голля и Бурдаха (задние столбы спинного мозга) достигают нежного и клиновидного ядер продолговатого мозга, где располагаются вторые нейроны. От этих нейронов волокна мышечно-суставной чувствительности, совершив перекрест, в составе медиальной петли доходят до зрительного бугра, где в вентральных заднелатеральном и заднемедиальном ядрах располагаются третьи нейроны.

Центральным отделом двигательного анализатора являются нейроны передней центральной извилины.

Внутренние (висцеральные) анализаторы

Внутренние анализаторы осуществляют анализ и синтез информации о состоянии внутренней среды организма и участвуют в регуляции работы внутренних органов. Можно выделить: 1) внутренний анализатор давления в кровеносных сосудах и давления (наполнений) во внутренних полых органах (периферическим отделом этого анализатора являются механорецепторы); 2) анализатор температуры; 3) анализатор химизма внутренней среды организма; 4) анализатор осмотического давления внутренней среды. Рецепторы этих анализаторов расположены в различных органах, сосудах, слизистых оболочках и ЦНС.

К механорецепторам относятся все рецепторы, для которых адекватными стимулами являются давление, а также растяжение, деформация стенок органов (сосуды, сердце, легкие, желудочно-кишечный тракт и другие внутренние полые органы). К хеморецедторам относят всю массу рецепторов, реагирующих на различные химические вещества: это рецепторы аортального и каротидного клубочков, рецепторы слизистых оболочек пищеварительного тракта и органов дыхания, рецепторы серозных оболочек, а также хеморецепторы головного мозга. Осморецепторы локализованы в аортальном и каротидном синусах, в других сосудах артериального русла, в интерстициальной ткани вблизи капилляров, в печени и других органах. Часть осморецепторов является механорецепторами, часть – хеморецепторами. Терморецепторы локализованы в слизистых оболочках пищеварительного тракта, органов дыхания, мочевого пузыря, серозных оболочках, в стенках артерий и вен, в каротидном синусе, а также в ядрах гипоталамуса.

Проводниковый отдел. От интерорецепторов возбуждение в основном проходит в одних стволах с волокнами вегетативной нервной системы. Первые нейроны находятся в соответствующих чувствительных ганглиях, вторые нейроны – в спинном или продолговатом мозге. Восходящие пути от них достигают заднемедиальное ядро таламуса (третий нейрон) и затем поднимаются в кору больших полушарий (четвертый нейрон).

Корковый отдел локализуется в зонах С1и С2 соматосенсорной области коры и в орбитальной области коры большого мозга.

Восприятие некоторых интероцептивных стимулов может сопровождаться возникновением четких, локализованных ощущений, например при растяжении стенок мочевого пузыря или прямой кишки. Но висцеральная импульсация (от интерорецепторов сердца, сосудов, печени, почек и др.) может и не вызывать ясно осознаваемых ощущений. Обусловлено это тем, что такие ощущения возникают в результате раздражения различных рецепторов, входящих в ту или иную систему органов. В любом случае изменения внутренних органов оказывают значительное влияние на эмоциональное состояние и характер поведения человека.

Кожные анализаторы

Температурный анализатор

Температурный кожный анализатор обеспечивает информацию о температуре внешней среды и формирование температурных ощущений, что имеет большое значение для осуществления процессов терморегуляции и поведенческих приспособительных реакций. Как и тактильный, он относится к соматосенсорному анализатору.

Периферический отдел представлен двумя видами рецепторов: одни реагируют на холодовые стимулы, другие – на тепловые. Тепловые рецепторы – это тельца Руффини, а холодовые — колбы Краузе. Рецепторы холода расположены в эпидермисе и непосредственно под ним, а рецепторы тепла – преимущественно в нижнем и верхнем слоях собственно кожи и слизистой оболочки.

Проводниковый отдел. От рецепторов холода отходят миелинизированные волокна типа А, а от рецепторов тепла – немиелинизированные волокна типа С, поэтому информация от холодовых рецепторов распространяется с большей скоростью, чем от тепловых. Первый нейрон локализуется в спинальных ганглиях. Клетки задних рогов спинного мозга представляют второй нейрон. Нервные волокна, отходящие от вторых нейронов температурного анализатора, переходят через переднюю комиссуру на противоположную сторону в боковые столбы и в составе латерального спинно-таламического тракта доходят до зрительного бугра, где находится третий нейрон. Отсюда возбуждение поступает в кору полушарий большого мозга.

Центральный отдел температурного анализатора локализуется в области задней центральной извилины коры большого мозга.

Восприятие температурных раздражителей. Существует зона температуры кожи, в пределах которой в результате адаптации к температуре внешней среды происходит полное исчезновение температурных ощущений. Эта зона получила название зоны комфорта, или нейтральной зоны. Изменения температуры кожи и отклонения от зоны комфорта происходят под влиянием факторов внешней и внутренней сред организма и сопровождаются возникновением ощущения тепла или холода. Интенсивность этих ощущений зависит от величины отклонения от диапазона зоны комфорта. Если температура кожи не меняется и какое-то время остается постоянной, то реакция терморецепторов в этих случаях обозначается как статическая. Уровень статической реакции зависит от длительности температурного раздражения и величины отклонения от диапазона зоны комфорта. При длительном воздействии температурных факторов внешней среды и малых отклонениях температуры кожи возможно развитие медленной частичной адаптации с сохранением низкого уровня статической реакции терморецепторов. При значительном изменении температуры внешней среды и больших отклонениях от зоны комфорта, когда развитие адаптации уменьшается, проявляется высокий уровень статической реакции терморецепторов.

Различают также динамические реакции терморецепторов, при которых формируются температурные ощущения, связанные с изменениями температуры кожи. Динамические реакции терморецепторов определяются тремя параметрами: исходной температурой и скоростью изменения температуры внешней среды, а также величиной поверхности кожи, на которую действует температурный фактор. Исходная температура кожи определяет уровень возбудимости терморецепторов: чем ниже температура кожи, тем выше возбудимость Холодовых и ниже – тепловых рецепторов и наоборот. При большой скорости изменения температуры внешней среды происходят быстрые изменения возбудимости терморецепторов кожи. При малой скорости изменения температуры среды возбудимость рецепторов изменяется медленно и может наблюдаться явление аккомодации, т.е. приспособление к воздействию медленно нарастающего температурного фактора, проявляющегося в снижении возбудимости терморецепторов кожи. Интенсивность температурных ощущений находится в прямо пропорциональной зависимости от величины поверхности кожи, на которую воздействует температурный стимул: чем больше площадь воздействия температурного фактора, тем температурные ощущения сильнее, и наоборот, если маленькие участки кожи подвергаются воздействию температуры, ощущения понижены. Это явление объясняют наличием пространственной суммации на разных уровнях проводникового отдела температурного анализатора, что оказывает влияние на формирование температурных ощущений.

Данное объяснение подтверждается опытом с двусторонней стимуляцией. Так, например, при одновременном температурном воздействии на тыльную поверхность обеих рук температурные ощущения будут выше, чем при обогревании или охлаждении одной руки.

Иногда наблюдаются парадоксальные ощущения холода при воздействии высоких температур. Это можно объяснить тем, что холодовые рецепторы располагаются ближе к поверхности кожи (на глубине 0,17 мм), чем тепловые, расположенные на глубине 0,3 – 0,6 мм, поэтому холодовые рецепторы возбуждаются быстрее. В то же время считают, что причина этого явления, возможно, лежит в том, что холодовые рецепторы, в норме «молчащие» при температуре выше +40 °С, вдруг возбуждаются на короткое время, если на них быстро подействовать температурой выше +45 °С.

Тактильный анализатор

Тактильный анализатор является частью кожного анализатора. Он обеспечивает ощущения прикосновения, давления, вибрации и щекотки.

Периферический отдел представлен различными рецепторными образованиями, раздражение которых приводит к формированию специфических ощущений. На поверхности кожи, лишенной волос, а также на слизистых оболочках на прикосновение реагируют специальные рецепторные клетки (тельца Мейснера), расположенные в сосочковом слое кожи. На коже, покрытой волосами, на прикосновение реагируют рецепторы волосяного фолликула, обладающие умеренной адаптацией.

На давление реагируют рецепторные образования (диски Меркедя), расположенные небольшими группами в глубоких слоях кожи и слизистых оболочек. Это медленно адаптирующиеся рецепторы. Адекватным стимулом для них служит прогибание эпидермиса при действии механического стимула на кожу.

Вибрацию воспринимают тельца Пачини, располагающиеся как в слизистой, так и на не покрытых волосами частях кожи, в жировой ткани подкожных слоев, а также в суставных сумках, сухожилиях. Эти рецепторы представлены нервными терминалями, заключенными в слоистые оболочки из соединительной ткани. Тельца Пачини обладают очень быстрой адаптацией и реагируют на ускорение при смещении кожи в результате действия механических стимулов, одновременно вовлекаются в реакцию несколько телец Пачини.

Щекотание воспринимают свободно лежащие, неинкапсулированные нервные окончания, расположенные в поверхностных слоях кожи. Для данного вида рецепторов характерна низкая специфичность реакции на стимулы разной интенсивности. С активацией этой группы рецепторов связывают ощущение щекотки, что и дало название самим рецепторам – рецепторы щекотки (рис. 2.11).

По функциональным особенностям тактильные рецепторы подразделяются на фазные и статические. Фазные тактильные рецепторы возбуждаются при динамическом раздражении. Они обладают высокой чувствительностью, коротким латентным периодом, быстро адаптируются. Статические тактильные рецепторы возбуждаются в основном от статического раздражения. Они менее чувствительны, чем фазные, с более длительным латентным периодом, медленно адаптируются.

Рис. 2.11. Схема строения и положения механорецепторов в коже на не покрытых волосами (а) и волосистых (б) участках кожи

Проводниковый отдел.От большинства механорецепторов в спинной мозг информация поступает в центральную нервную систему по А-волокнам и лишь от рецепторов щекотки – по С-волокнам. Первый нейрон находится в спинальных ганглиях. В заднем роге спинного мозга происходит первое переключение на интернейроны (второй нейрон), от них восходящий путь в составе заднего столба достигает ядер заднего столба в продолговатом мозге (третий нейрон), где происходит второе переключение, далее через медиальную петлю путь следует к вентро-базальным ядрам зрительного бугра (четвертый нейрон), центральные отростки нейронов зрительного бугра идут в кору больших полушарий.

Центральный отдел тактильного анализатора локализуется в 1 и II зонах соматосенсорной области коры большого мозга (задняя центральная извилина).

Исследования уровня тактильной чувствительности можно проводить с помощью «волосков Фрея», а пространственных порогов, которые характеризуют плотность распределения тактильных рецепторов, – «циркулем Вебера».

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Внутренние (висцеральные) анализаторы

Внутренние анализаторы осуществляют анализ и синтез информации о состоянии внутренней среды организма и участвуют в регуляции работы внутренних органов.

Можно выделить: 1) внутренний анализатор давления в кровеносных сосудах и давления (наполнений) во внутренних полых органах (периферическим отделом этого анализатора являются механорецепторы); 2) анализатор температуры; 3) анализатор химизма внутренней среды организма; 4) анализатор осмотического давления внутренней среды.

Рецепторы этих анализаторов расположены в различных органах, сосудах, слизистых оболочках и ЦНС.

К механорецепторам относятся все рецепторы, для которых адекватными стимулами являются давление, а также растяжение, деформация стенок органов (сосуды, сердце, легкие, желудочно-кишечный тракт и другие внутренние полые органы). К хеморецедторам относят всю массу рецепторов, реагирующих на различные химические вещества: это рецепторы аортального и каротидного клубочков, рецепторы слизистых оболочек пищеварительного тракта и органов дыхания, рецепторы серозных оболочек, а также хеморецепторы головного мозга.

Внутренние (висцеральные) анализаторы

Осморецепторы локализованы в аортальном и каротидном синусах, в других сосудах артериального русла, в интерстициальной ткани вблизи капилляров, в печени и других органах. Часть осморецепторов является механорецепторами, часть – хеморецепторами. Терморецепторы локализованы в слизистых оболочках пищеварительного тракта, органов дыхания, мочевого пузыря, серозных оболочках, в стенках артерий и вен, в каротидном синусе, а также в ядрах гипоталамуса.

Проводниковый отдел.

От интерорецепторов возбуждение в основном проходит в одних стволах с волокнами вегетативной нервной системы. Первые нейроны находятся в соответствующих чувствительных ганглиях, вторые нейроны – в спинном или продолговатом мозге. Восходящие пути от них достигают заднемедиальное ядро таламуса (третий нейрон) и затем поднимаются в кору больших полушарий (четвертый нейрон).

Корковый отдел локализуется в зонах С1и С2 соматосенсорной области коры и в орбитальной области коры большого мозга.

Восприятие некоторых интероцептивных стимулов может сопровождаться возникновением четких, локализованных ощущений, например при растяжении стенок мочевого пузыря или прямой кишки.

Но висцеральная импульсация (от интерорецепторов сердца, сосудов, печени, почек и др.) может и не вызывать ясно осознаваемых ощущений. Обусловлено это тем, что такие ощущения возникают в результате раздражения различных рецепторов, входящих в ту или иную систему органов.

В любом случае изменения внутренних органов оказывают значительное влияние на эмоциональное состояние и характер поведения человека.

Кожные анализаторы

Температурный анализатор

Температурный кожный анализатор обеспечивает информацию о температуре внешней среды и формирование температурных ощущений, что имеет большое значение для осуществления процессов терморегуляции и поведенческих приспособительных реакций.

Как и тактильный, он относится к соматосенсорному анализатору.

Периферический отдел представлен двумя видами рецепторов: одни реагируют на холодовые стимулы, другие – на тепловые. Тепловые рецепторы – это тельца Руффини, а холодовые — колбы Краузе.

Рецепторы холода расположены в эпидермисе и непосредственно под ним, а рецепторы тепла – преимущественно в нижнем и верхнем слоях собственно кожи и слизистой оболочки.

Проводниковый отдел. От рецепторов холода отходят миелинизированные волокна типа А, а от рецепторов тепла – немиелинизированные волокна типа С, поэтому информация от холодовых рецепторов распространяется с большей скоростью, чем от тепловых.

Первый нейрон локализуется в спинальных ганглиях. Клетки задних рогов спинного мозга представляют второй нейрон. Нервные волокна, отходящие от вторых нейронов температурного анализатора, переходят через переднюю комиссуру на противоположную сторону в боковые столбы и в составе латерального спинно-таламического тракта доходят до зрительного бугра, где находится третий нейрон.

Отсюда возбуждение поступает в кору полушарий большого мозга.

Центральный отдел температурного анализатора локализуется в области задней центральной извилины коры большого мозга.

Восприятие температурных раздражителей. Существует зона температуры кожи, в пределах которой в результате адаптации к температуре внешней среды происходит полное исчезновение температурных ощущений. Эта зона получила название зоны комфорта, или нейтральной зоны.

Изменения температуры кожи и отклонения от зоны комфорта происходят под влиянием факторов внешней и внутренней сред организма и сопровождаются возникновением ощущения тепла или холода. Интенсивность этих ощущений зависит от величины отклонения от диапазона зоны комфорта.

Если температура кожи не меняется и какое-то время остается постоянной, то реакция терморецепторов в этих случаях обозначается как статическая. Уровень статической реакции зависит от длительности температурного раздражения и величины отклонения от диапазона зоны комфорта. При длительном воздействии температурных факторов внешней среды и малых отклонениях температуры кожи возможно развитие медленной частичной адаптации с сохранением низкого уровня статической реакции терморецепторов.

При значительном изменении температуры внешней среды и больших отклонениях от зоны комфорта, когда развитие адаптации уменьшается, проявляется высокий уровень статической реакции терморецепторов.

Различают также динамические реакции терморецепторов, при которых формируются температурные ощущения, связанные с изменениями температуры кожи. Динамические реакции терморецепторов определяются тремя параметрами: исходной температурой и скоростью изменения температуры внешней среды, а также величиной поверхности кожи, на которую действует температурный фактор.

Исходная температура кожи определяет уровень возбудимости терморецепторов: чем ниже температура кожи, тем выше возбудимость Холодовых и ниже – тепловых рецепторов и наоборот. При большой скорости изменения температуры внешней среды происходят быстрые изменения возбудимости терморецепторов кожи. При малой скорости изменения температуры среды возбудимость рецепторов изменяется медленно и может наблюдаться явление аккомодации, т.е. приспособление к воздействию медленно нарастающего температурного фактора, проявляющегося в снижении возбудимости терморецепторов кожи.

Интенсивность температурных ощущений находится в прямо пропорциональной зависимости от величины поверхности кожи, на которую воздействует температурный стимул: чем больше площадь воздействия температурного фактора, тем температурные ощущения сильнее, и наоборот, если маленькие участки кожи подвергаются воздействию температуры, ощущения понижены.

Это явление объясняют наличием пространственной суммации на разных уровнях проводникового отдела температурного анализатора, что оказывает влияние на формирование температурных ощущений.

Данное объяснение подтверждается опытом с двусторонней стимуляцией. Так, например, при одновременном температурном воздействии на тыльную поверхность обеих рук температурные ощущения будут выше, чем при обогревании или охлаждении одной руки.

Иногда наблюдаются парадоксальные ощущения холода при воздействии высоких температур.

Это можно объяснить тем, что холодовые рецепторы располагаются ближе к поверхности кожи (на глубине 0,17 мм), чем тепловые, расположенные на глубине 0,3 – 0,6 мм, поэтому холодовые рецепторы возбуждаются быстрее. В то же время считают, что причина этого явления, возможно, лежит в том, что холодовые рецепторы, в норме «молчащие» при температуре выше +40 °С, вдруг возбуждаются на короткое время, если на них быстро подействовать температурой выше +45 °С.

Тактильный анализатор

Тактильный анализатор является частью кожного анализатора.

Он обеспечивает ощущения прикосновения, давления, вибрации и щекотки.

Периферический отдел представлен различными рецепторными образованиями, раздражение которых приводит к формированию специфических ощущений.

На поверхности кожи, лишенной волос, а также на слизистых оболочках на прикосновение реагируют специальные рецепторные клетки (тельца Мейснера), расположенные в сосочковом слое кожи.

На коже, покрытой волосами, на прикосновение реагируют рецепторы волосяного фолликула, обладающие умеренной адаптацией.

На давление реагируют рецепторные образования (диски Меркедя), расположенные небольшими группами в глубоких слоях кожи и слизистых оболочек.

Это медленно адаптирующиеся рецепторы. Адекватным стимулом для них служит прогибание эпидермиса при действии механического стимула на кожу.

Вибрацию воспринимают тельца Пачини, располагающиеся как в слизистой, так и на не покрытых волосами частях кожи, в жировой ткани подкожных слоев, а также в суставных сумках, сухожилиях.

Эти рецепторы представлены нервными терминалями, заключенными в слоистые оболочки из соединительной ткани. Тельца Пачини обладают очень быстрой адаптацией и реагируют на ускорение при смещении кожи в результате действия механических стимулов, одновременно вовлекаются в реакцию несколько телец Пачини.

Щекотание воспринимают свободно лежащие, неинкапсулированные нервные окончания, расположенные в поверхностных слоях кожи.

Для данного вида рецепторов характерна низкая специфичность реакции на стимулы разной интенсивности. С активацией этой группы рецепторов связывают ощущение щекотки, что и дало название самим рецепторам – рецепторы щекотки (рис. 2.11).

По функциональным особенностям тактильные рецепторы подразделяются на фазные и статические. Фазные тактильные рецепторы возбуждаются при динамическом раздражении.

Они обладают высокой чувствительностью, коротким латентным периодом, быстро адаптируются. Статические тактильные рецепторы возбуждаются в основном от статического раздражения. Они менее чувствительны, чем фазные, с более длительным латентным периодом, медленно адаптируются.

Рис. 2.11. Схема строения и положения механорецепторов в коже на не покрытых волосами (а) и волосистых (б) участках кожи

Проводниковый отдел.От большинства механорецепторов в спинной мозг информация поступает в центральную нервную систему по А-волокнам и лишь от рецепторов щекотки – по С-волокнам.

Первый нейрон находится в спинальных ганглиях. В заднем роге спинного мозга происходит первое переключение на интернейроны (второй нейрон), от них восходящий путь в составе заднего столба достигает ядер заднего столба в продолговатом мозге (третий нейрон), где происходит второе переключение, далее через медиальную петлю путь следует к вентро-базальным ядрам зрительного бугра (четвертый нейрон), центральные отростки нейронов зрительного бугра идут в кору больших полушарий.

Центральный отдел тактильного анализатора локализуется в 1 и II зонах соматосенсорной области коры большого мозга (задняя центральная извилина).

Исследования уровня тактильной чувствительности можно проводить с помощью «волосков Фрея», а пространственных порогов, которые характеризуют плотность распределения тактильных рецепторов, – «циркулем Вебера».

ТАКТИЛЬНЫЙ АНАЛИЗАТОР (лат. tactilis осязаемый) — совокупность периферических и центральных нервных образований, обеспечивающих восприятие и переработку информации о действии на наружные покровы организма различных неболевых механических раздражителей.

Тактильная чувствительность является составной частью осязательных ощущений (см.

Осязание), а Т. а.— частью соматосенсорного анализатора. Механические воздействия, обусловливающие возникновение тактильных ощущений, обычно подразделяют на прикосновение и давление.

Часто в качестве самостоятельного вида тактильных раздражителей выделяют вибрацию, фактически представляющую собой разновидность ритмического прикосновения.

Периферический отдел Т. а. образуют различные виды механорецепторов (см.) и связанные с ними афферентные нервные волокна (см.). Основной вид механорецепторов в волосистой части кожи (90% всей поверхности кожи) составляют свободные нервные окончания (см.), нервные окончания вокруг волосяных фолликулов, диски (тельца) Меркеля (осязательные мениски), тактильные корпускулы Игго.

В коже, лишенной волосяного покрова, основными рецепторными структурами являются свободные нервные окончания, диски Меркеля, тельца Мейсснера (осязательные тельца) и Пачини (пластинчатые тельца). Тактильные рецепторы на поверхности тела распределены весьма неравномерно, что обусловливает неодинаковую тактильную чувствительность ее разных участков.

Внутренние (висцеральные) анализаторы

Наиболее тонкая тактильная чувствительность отмечается на кончиках пальцев рук и языка, наименьшая — на коже брюшной и ягодичной областей. Очень богатой афферентной иннервацией и соответственно тактильной чувствительностью обладают вибриссы — специальные чувствительные волоски, встречающиеся у многих приматов и других млекопитающих, но отсутствующие у человека. Активность тактильных рецепторов совместно с рецепторами опорнодвигательного аппарата лежит в основе сложных осязательных ощущений.

Восприятие прикосновения (и вибраций) осуществляется с помощью фазных (быстро адаптирующихся) рецепторов, а давления — благодаря возбуждению тонических (медленно адаптирующихся) рецепторов.

К первым относятся тельца Пачини, ряд рецепторных структур волосяной сумки (так наз. Т-, G-, D-рецепторы, являющиеся окончаниями афферентных волокон Аа и Аа групп), ко вторым — тактильные корпускулы, тельца Руффини (окончания волокон Аа группы), свободные нервные окончания (разветвления волокон группы С). Абсолютный порог тактильной чувствительности определяется активностью наиболее чувствительных механорецепторов, к-ры-ми являются тельца Пачини, способные возбуждаться уже при смещениях порядка 10-4—10-5 мм.

Вибрационные раздражения воспринимаются в диапазоне от долей до 1 000—1 200 гц, но наибольшая чувствительность к вибрациям наблюдается в диапазоне от 200 до 400 гц (см. Вибрационная чувствительность). Помимо абсолютного порога тактильную чувствительность характеризуют дифференциальный порог и порог пространства. Дифференциальный порог — величина, на к-рую нужно изменить действующий раздражитель, чтобы вызвать минимальное изменение ощущения.

Дифференциальный порог характеризует процесс адаптации тактильных рецепторов к действию раздражителя и используется для выявления нарушений тактильной чувствительности. Порог пространства — наименьшее расстояние между двумя точками кожи, при одновременном раздражении к-рых возникает ощущение действия двух раздельных стимулов. Пороги пространства зависят от интенсивности ветвления нервного волокна на периферии и числа рецепторов, передающих возбуждение одному нервному волокну.

Пороги пространства значительно различаются на разных участках кожи: они минимальны (1 — 2,5 мм) на кончиках пальцев, губах, языке и максимальны (более 60 мм) на коже бедер, плеч, средней линии спины. Для определения дифференциальных порогов и порогов пространства используют те же методические приемы, что и для исследования осязания (см.) и чувствительности кожи (см.

Кожа), применяя только тактильные раздражители.

Анализ механизмов возбуждения тактильных рецепторов, составляющих биофизическую основу тактильной рецепции, осуществлен пока еще в малой степени, что связано с большими техническими сложностями исследования одиночных рецепторов, расположенных в плотных тканях тела.

Поэтому почти все сведения о деятельности этих рецепторов получены при изучении потоков импульсов, регистрируемых от одиночных афферентных нервных волокон. Единственным исключением являются крупные пластинчатые тельца Пачини, исследование к-рых позволило выяснить назначение и механизмы деятельности всех образующих их структур: капсулы, не-миелинизированной терминали и мя-котного нервного волокна.

Капсула рецептора (как и окружающая его ткань) выполняет роль вспомогательной структуры, проводящей механическое раздражение извне к нервной терминали. Она является механическим фильтром, определяющим скорость адаптации рецептора, а также его частотные характеристики (при действии вибраций).

Благодаря особому строению внутренней части капсулы тельце Пачини, как и ряд других тактильных рецепторов, обладает чувствительностью к направлению действия раздражителя. Собственно процесс рецепции осуществляется мембраной нервной терминали. При одном направлении стимула происходит растяжение поверхностной мембраны терминали, что приводит к возбуждению рецептора, проявляющемуся возникновением деполяризационного рецепторного потенциала и вслед за этим генерацией импульсных разрядов в первом перехвате Ранвье нервного волокна.

При другом направлении стимула мембрана терминали подвергается сжатию, что ведет к появлению тормозных гиперполяризационных рецепторных потенциалов. Рецепторные потенциалы представляют собой местные ответы поверхностной мембраны нервной терминали.

Известно, что деполяризационные рецепторные потенциалы вызываются увеличением проницаемости мембраны преимущественно к ионам натрия, к-рые переносят основную (до 90%) часть зарядов.

Афферентные нейроны первого порядка от тактильных рецепторов туловища и конечностей располагаются в спинномозговых узлах, а от рецепторов лица и головы — в полулунных (гассеровых) узлах тройничных нервов (тройничных узлах, Т.).

Сведения о восходящих путях тактильной афферентации получены гл. обр. в экспериментах на животных, преимущественно кошках. Основная часть быстропроводящих (Аа) волокон, занимающих медиальную часть задних корешков, после вхождения в спинной мозг направляется в составе задних столбов белого вещества к nuci, gracilis и nuci, cuneatus продолговатого мозга. Расположенные в этих ядрах тела афферентных нейронов второго порядка дают начало волокнам медиальной петли, образующим перекрест на уровне олив продолговатого мозга и заканчивающимся в специфических вентробазальных ядрах таламуса.

Информация от тактильных рецепторов головы также достигает этих структур. Здесь локализуются нейроны третьего порядка, к-рые посылают свои волокна в первую соматосенсорную область коры полушарий большого мозга (постцентра льную извилину).

По быстро-проводящим волокнам от тактильных рецепторов тела в таламус поступает также информация по латеральному тракту Морина. Начавшись от клеток задних рогов спинного мозга, этот спиноталамический путь переключается в боковом шейном ядре продолговатого мозга, а затем после перекреста сливается с медиальной петлей.

Медленно проводящие волокна от тактильных рецепторов тела проходят в латеральной части задних корешков и заканчиваются на крупных канатиковых клетках задних рогов спинного мозга. Отсюда начинаются спиноталамические пути (передние и боковые). На спинальном уровне эти пути осуществляют частичный перекрест и дают диффузную проекцию в комплекс вентробазальных ядер таламуса (более вентрально, чем медиальная петля), в неспецифические ядра таламуса и в крупноклеточный отдел медиального коленчатого тела.

Отсюда начинаются волокна, идущие во вторую соматосенсорную область коры (у кошки — в переднюю экто-сильвиеву извилину, у человека и обезьян — кзади и вентральнее первой соматосенсорной области). Туда же поступают волокна, связанные с трактом Морина. Благодаря этим волокнам сигналы достигают второй соматосенсорной области коры с коротким латентным периодом.

В коре выделяют иногда и третью соматосенсорную зону, к-рая у животных располагается между передней экто-си л ьвиевой и ансатной извилинами. Ответы ее нейронов имеют большие латентные периоды, чем ответы нейронов других двух зон, и вызываются специфическими раздражителями с небольших рецептивных полей.

Система медиальной петли обеспечивает передачу информации о специфических тактильных раздражениях небольшой интенсивности (прикосновении, легком давлении); латеральный тракт Морина передает сведения о более сильных деформациях кожи, а спиноталамическая система является путем, по к-рому поступают сигналы о значительных механических воздействиях, причем этот путь является неспецифическим, обеспечивающим кодирование информации и о температурных воздействиях.

У нейронов системы медиальной петли рецептивные поля невелики, а для всей системы характерна строгая топографическая организация проекций областей поверхности кожи. У нейронов же спиноталамической системы рецептивные поля очень большие, покрывающие иногда все тело, но в ее ядрах нет четкого топического представительства поверхности тела. В целом система задние столбы — медиальная петля осуществляет специфические формы тактильного различения, а спиноталамическая система дает значительно более генерализованные формы ощущений и связана с передачей информации о качественной природе влияний с периферии, а не о локализации и форме раздражителя, его изменении во времени.

Совместно с другими видами чувствительности кожи (см. Кожа) тактильная чувствительность может в какой-то степени компенсировать отсутствие или недостаточность функции других органов чувств (зрения, слуха). У слепых количество телец Пачини в коже пальцев и ладоней резко возрастает, и тактильная чувствительность этих областей значительно превышает таковую у зрячих. Нарушения тактильной чувствительности (см.

Осязание) тесно связаны с нарушениями других видов чувствительности кожи и в клинике исследуются вместе с ними.

Библиография: Есаков А. И. и Дмитриева Т. М. Нейрофизиологические основы тактильного восприятия, М., 1971, библиогр.; Ильинский О. Б. Физиология механорецепторов, JI., 1975; Физиология сенсорных систем, под ред. А. С. Батуева, Л., 1976.

О. Б. Ильинский.

Кожный анализатор

Кожный анализатор представлен совокупностью рецепторных образований, обеспечивающих температурные, тактильные и болевые ощущения.

Его периферические отделы расположены на поверхности тела (в коже, слизистых оболочках), в глубине тела (например, механорецепторы сердечно-сосудистой системы) и могут входить в состав специализированных сенсорных органов (глаз, ухо).

Количество рецепторов различного типа, приходящихся на 1 см2 кожной поверхности, в разных её участках неодинаково и составляет в среднем: 50 болевых, 25 тактильных, 12 холодовых и 2 тепловые точки.

Наибольшая чувствительность присуща губам и кончикам пальцев.

Терморецепторы играют важную роль в сохранении постоянства температуры нашего тела. Тактильные рецепторы (механорецепторы) обеспечивают восприятие механических воздействий, ощущение давления, прикосновения, вибрации. Болевые рецепторы (ноцирецепторы) реагируют на болевые раздражения и позволяют избегать действия агентов, повреждающих клетки и ткани.

Совокупность всех этих ощущений составляет чувство осязания.

Сигналы от кожных рецепторов поступают по сенсорным (афферентным) нервам в кору больших полушарий, где и осуществляется анализ и окончательная переработка сенсорной информации.

Возбудимость кожного анализатора максимальна с 17 до 27 лет, но может резко изменяться в зависимости от состояния коры головного мозга, снижаясь, например, при утомлении и сильных эмоциях.

Одновременное раздражение других анализаторов также заметно снижает кожную чувствительность, даже ощущение боли средней силы в данном случае существенно уменьшается.

14 Тема. Общее представление о железах внутренней секреции и гормонах

Все железы организма подразделяют на железы внешней секреции, которые имеют выводные протоки, и железы внутренней секреции, или эндокринные, которые не имеют выводных протоков и выделяют свой секрет в межклеточное пространство, затем кровь, лимфу.

Секреты, выделяемые железами внутренней секреции, называются гормонами.

Они вырабатываются в железах внутренней секреции двух типов: 1) железах со смешанной функцией (поджелудочная, половые); 2) железах внутренней секреции (гипофиз, эпифиз).

Гормоны могут вырабатывать и другие органы и клетки организма, например, плацента, клетки слизистой оболочки кишечника, Клетки ЦНС (нейрогормоны).

Такие гормоны называют тканевыми.

Для гормонов характерны специфические свойства:

– высокая биологическая активность;

– специфичность;

– дистанционное воздействие;

– маленький размер молекул; – относительная быстрота разрушения; – не имеют видовой специфичности.

Гормоны влияют на все функции организма.

Они регулируют обмен белков, жиров, углеводов, воды, минеральных солей, тем самым поддерживают гомеостаз. Влияют на рост и формирование органов, систем органов и всего организма в целом. Вместе с нервной системой обеспечивают приспособительные реакции организма в условиях стресса. Выработка гормонов зависит от состояния организма и условий окружающей среды. При нарушении функций желез внутренней секреции может наблюдаться повышенная продукция гормона – гиперфункция, или пониженная – гипофункция.

Функции эндокринных желез регулируются ЦНС, которая контролирует выделение всех гормонов.

Формирование эндокринной системы начинается еще внутриутробно. Большинство гормонов синтезируется уже на 2-м месяце внутриутробного развития. К моменту рождения ребенка формируется сложная нейроэндокринная система регуляции функций. Роль гормонов в формировании организма велика и оказывает влияние на все этапы последующего развития ребенка.

Так, при недостаточности функции щитовидной железы новорожденный ребенок развивается неполноценным в умственном отношении (врожденный кретинизм). Поражение желез внутренней секреции ведет к более грубым, чем у взрослых, тяжелым нарушениям развития и роста, но коррекция этих нарушений может быть более эффективной, чем у взрослых. Одни железы (тимус, эпифиз) интенсивно функционируют в детском возрасте, другие – в зрелом.

Эпифиз

Верхний мозговой придаток (шишковидная железа) принимает участие в механизме регуляции, определяющем половое созревание системы эндокринных желез, и интенсивно функционирует до 7 лет, затем начинается его атрофия.

Он выделяет гормоны, тормозящие секрецию половых желез. При гиперфункции наступает раннее половое созревание.

Вилочковая железа (тимус)

Тимус важен в формировании иммунитета, особенно в детском возрасте, в частности в период новорожденности.

Гипофиз

Расположен в углублении основной кости черепа и анатомически связан с подбугровой областью головного мозга.

Выделяет более 22 гормонов. Передняя доля гипофиза выделяет гормоны, влияющие на рост. Гиперфункция ее в детском возрасте приводит к гигантизму. При этом задерживается половое развитие ребенка. У него появляются головные боли, слабость, утомляемость, ухудшается зрение, непропорциональность сложения. Гиперфункция гипофиза у взрослых людей вызывает заболевание акромегалию. Оно сопровождается увеличением отдельных частей тела: носа, подбородка, ушей… Дети акромегалией не болеют.

Гипофункция гипофиза влечет за собой задержку роста (гипофизарный нанизм).

Половые железы при этом заболевании не развиваются. Такие дети отличаются пропорциональностью телосложения. В умственном отношении они не отличаются от обычных детей.

При некоторых поражениях гипофиза развиваются резкое исхудание и большая мышечная слабость, появляется много морщин, отвращение к пище, снижается артериальное давление.

Промежуточная доля гипофиза развита у детей.

Двигательный (кинестетический) анализатор

Она образует гормоны, влияющие на пигментацию кожи и на черный пигмент в глазу.

Из задней доли гипофиза выделены гормоны, которые резко угнетают мочеобразование, повышают АД, вызывают сокращение мускулатуры матки. Гипофиз, несмотря на малые размеры (0,5 г), является регулятором деятельности всех желез внутренней секреции. Он оказывает влияние на все вегетативные функции организма и ВНД.

Щитовидная железа

Расположена впереди гортани.

Наибольший рост бывает у детей в возрасте 5 – 7 лет и у подростков 13 – 15 лет.

Ее гормоны участвуют в регуляции обмена веществ, влияют на деятельность нервной системы и сердечно-сосудистой системы.

Гипофункция щитовидной железы приводит к таким заболеваниям, как микседема, кретинизм, зоб.

Микседема влечет за собой ряд изменений не только в строении организма, но и в его психической деятельности.

У таких детей кожа сухая, грубая, отечная, ослаблены окислительные процессы, озноб, потеря памяти, апатия, сонливость, утомляемость.

Кретинизм (слабоумие) сопровождается карликовым ростом, умственной отсталостью, задержкой полового развития.

Зоб развивается при недостатке иода в организме, в результате перенесенных заболеваний, плохих санитарных условий жизни.

При гиперфункции щитовидной железы возникает заболевание, названное базедовой болезнью. Внешне оно проявляется в пучеглазии.

У таких больных учащается работа сердца, возникают боли в животе, повышение температуры тела, сильное исхудание, слабость, раздражительность.

Поджелудочная железа

Выделяет гормон инсулин, который играет важную роль в углеводном обмене. С гипофункцией связана болезнь – диабет.

При недостатке инсулина в крови значительно понижается образование гликогена в печени, и глюкоза, свободно проходя через этот орган, попадает в кровь.

В таких случаях почки начинают выделять избыток глюкозы и в моче появляется виноградный сахар.

Этиология его зачастую обусловлена наследственностью, а провоцирующими факторами можно считать систематическое переедание, особенно продуктов, богатых легкоусвояемыми углеводами (сладости, кондитерские изделия), нервно-психические перегрузки и инфекционные инвазии.

Сахарный диабет сопровождается поражением всех органов и систем. У детей диабет чаще всего развивается в возрасте 6 – 12 лет после перенесенных инфекционных заболеваний, хронического гепатита, панкреатита и при ожирении.

Половые железы

Половые железы – яички у мужчин и яичники у женщин относятся к железам смешанной секреции. Они выполняют две функции: выделение половых клеток и выделение мужских и женских половых гормонов (андрогенов и эстрогенов).

Благодаря этим гормонам развиваются вторичные половые признаки – размеры и пропорции тела, волосяной покров, характер отложения жира, тембр голоса, развитие молочных желез.

Становление половой функции у девочек происходит с 7 – 8 до 16 – 17 лет, а мальчики созревают позже с 10 – 11 до 17 – 18 лет.

Надпочечники

Надпочечники состоят из мозгового и коркового вещества. Мозговое вещество вырабатывает адреналин и норадреналин.

Адреналин регулирует многие жизненно важные функции организма: усиливает и учащает сердечные сокращения, сужает артериолы кожи, угнетает сокращение желудка, расслабляет мускулатуру бронхов. Адреналин способен вызывать быстрое повышение работоспособности организма. Гормоны коры надпочечников регулируют минеральный, водный, углеводный, белковый, жировой обмен.

Половые гормоны надпочечников близки к тем, которые вырабатывают половые железы. Они играют роль в развитии репродуктивных органов в детском возрасте, но по достижении половой зрелости их функции снижаются.

Гиперфункция коркового вещества в детстве способствует раннему половому созреванию, а у взрослых – может привести к появлению вторичных половых признаков противоположного пола.

15 Тема. Эндокринный контроль роста ребенка.

Предыдущая567891011121314151617181920Следующая

Дата добавления: 2015-09-21; просмотров: 840;

ПОСМОТРЕТЬ ЕЩЕ:

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *