Происхождение и эволюция солнечной системы


Происхождение и эволюция Солнечной системы

Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Наша Солнечная система – не единственная во Вселенной Элементы этой теории используются в современной космогонии.Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М. Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы.В настоящее время общепризнанной является теория формирования планетной системы в четыре этапа. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно. При этом стихает первоначальная турбулентность, хаотичное движение частиц, газ конденсируется в твердое вещество, минуя жидкую фазу. Образуются более крупные твердые пылевые крупинки – частицы. Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой – газопылевой диск. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск. Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости в пылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела – планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась. Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико – миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды. Протосолнце становится горячим. Его излучение нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения. Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.


Млечный путь, в состав которого входит Солнечная система

В нашей Солнечной системе на периферии образовались планеты-гиганты, способные удержать возле себя газовые оболочки. Сначала сформировались ядра планет-гигантов, а затем планеты «нарастили» себе оболочку из водорода и гелия. Двухступенчатая модель образования гигантов подтверждается фактами.В центре Солнечной системы сформировались менее массивные планеты. Здесь солнечный ветер выдул мелкие частицы и газ. А вот более тяжелые частицы, наоборот, стремились к центру. Рост Земли продолжался сотни миллионов лет. Ее недра прогрелись до 1000–2000 К благодаря гравитационному сжатию и участвовавшим в аккумуляции крупным телам (до сотен километров в поперечнике). Падение таких тел сопровождалось образованием кратеров с очагами повышенной температуры под ними. Другой и основной источник тепла Земли – распад радиоактивных элементов, в основном, урана, тория и калия. В настоящее время температура в центре Земли достигает 5000 К, что гораздо выше, чем в конце аккумуляции. Солнечные приливы затормозили вращение близких к Солнцу планет – Меркурия и Венеры. С появлением радиологических методов был точно определен возраст Земли, Луны и Солнечной системы – около 4,6 млрд. лет. Компьютерные эксперименты продемонстрировали замечательное свойство нашей планетной системы: пролет звезды с массой порядка 0,1 массы Солнца через ее внешние области мало изменит орбиты планет земной группы.

Астрономы древности полагали, что Вселенная и Солнечная система существовали вечно и будут существовать еще столько же в неизменном виде. С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают. В 1745 году французский ученый Бюффон высказал гипотезу, что планеты образовались из вещества, выброшенного из Солнца после столкновения Солнца с кометой. Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце.


Снимок Солнца

В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной. Согласно Лапласу, часть газового вещества отделилась от центрального сгустка под действием возросшей при сжатии центробежной силы, что следует из закона сохранения момента количества движения. Это вещество послужило материалом для образования планет. Гипотеза Лапласа долгое время владела умами ученых, но трудности, с которыми она встретилась, в частности при объяснении медленности современного вращения Солнца, заставили астрономов обратиться к другим гипотезам. В конце 19 в. появилась гипотеза американских ученых Ф. Мультона и Т. Чемберлена об образовании планет из мелких твердых частиц, названных ими планетезималями. Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путем застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. Такое образование планетезималей противоречит закону сохранения момента количества движения, но в то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет.

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в конце 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить огромные размеры планетной системы. Чтобы вырвать вещество из Солнца, звезда должна была пролететь очень близко от него, а в таком случае это вещество и возникшие из него планеты должны были бы кружиться в непосредственном соседстве с Солнцем. Кроме того, вырванное вещество было бы весьма горячим, поэтому оно скорее рассеялось бы в пространстве, чем собралось в планеты. После крушения гипотезы Джинса планетная космогония вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества.В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система.В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Идея об аккумуляции планет из роя холодных тел и частиц, который, по его представлениям, был захвачен Солнцем, в отличие от предшествующих космогонических гипотез, рассматривавших образование планет из раскаленных газовых сгустков, Земля образовалась из холодных твердых тел и сначала была относительно холодной. Шмидт считал, что вопросы происхождения допланетного облака, образования планет и их эволюции могут рассматриваться в некоторой степени независимо. Работами Шмидта и ряда других советских ученых (Л.Э. Гуревича, А.И. Лебединского, Б.Ю. Левина, В.С. Сафронова) выяснены основные черты эволюции протопланетного облака и процесса формирования планет.


Вид Земли с орбиты

В 60-х гг. 20 в. появились первые приближенные количеств. теории совместного образования Солнца и протопланетного облака (Ф. Хойл, Великобритания, 1960 г.; А. Камерон, США, 1962 г.; Э. Шацман, Франция, 1967 г.). В этих теориях в той или иной форме рассматривалось отделение вещества от сжимающегося протосолнца вследствие наступления у него ротационной неустойчивости (при уравнивании на экваторе центробежной силы и силы притяжения).

Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность средних плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах химической неоднородности частично сглаживались. Удары тел с размерами в десятки и более км. приводили к накоплению существенной доли энергии на большой глубине, что являлось основным источником нагрева планеты. Дополнительный разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше температуры плавления пород на этих глубинах. На глубинах 50-2000 км температура превосходила температуру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую, уже тогда допускавшую существование первичных водных бассейнов.

По-видимому, уже на заключительных этапах аккумуляции Земли началась крупномасштабная дифференциация вещества — отделение и уход в нижние горизонты тяжелых компонентов. Гравитационная энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара — земную кору. Это был длительный процесс (несколько млрд. лет), который в разных местах земного шара протекал по-разному, что привело к образованию участков с толстой корой (материков) и участков с тонкой корой (океанических впадин). Земная кора отличается и по составу, и по плотности от подстилающего ее вещества мантии Земли. Плотность коры составляет 2,7-2,8 г/см3, а плотность верхней мантии (приведённая к нулевому давлению) около 3,3-3,5 г/см3. Скачок плотности на границе ядра превышает 4 г/см3. Плотность вещества ядра несколько меньше плотности Fe при этих давлениях, что указывает на присутствие в нем какой-то более легкой примеси.

Разогревание Земли сопровождалось выделением газов и водяных паров, содержащихся в небольшом количестве в земных каменистых веществах. Прорвавшись на поверхность, водяные пары сконденсировались в воды морей и океанов, а газы образовали атмосферу, состав которой первоначально существенно отличался от современного. Состав современной земной атмосферы в значительной мере обусловлен существованием на Земле жизни (биосферы). Некоторую роль в образовании гидросферы и атмосферы, возможно, сыграли падавшие на Землю ледяные ядра комет.

Процесс химического расслоения земных недр происходит и сейчас. Легкие расплавы в виде магмы поднимаются из мантии в кору, они частично застревают и застывают внутри земной коры, а частично прорывают кору и в виде лавы изливаются наружу при вулканических извержениях. Перемещения вещества в недрах Земли проявляются в виде подъемов и опусканий больших участков поверхности, горизонтальных перемещений отдельных плит, на которые расчленена земная кора, в виде процессов вулканизма и горообразования, а также землетрясений.



Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли.

Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Элементы этой теории используются в современной космогонии.

Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М .

Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы. Телескопом им. Кека на Гавайских островах была исследована молодая звезда HR 4796. На полученных изображениях в инфракрасном диапазоне вокруг нее виден диск радиусом примерно 200 а.е.

Центральная часть диска свободна от пыли. Считают, что в центральной области из пыли уже сформировались крупные планетные тела, а во внешней части продолжают формироваться кометы.

В настоящее время общепризнанной является теория формирования планетной системы в четыре этапа. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно.

При этом стихает первоначальная турбулентность, хаотичное движение частиц. Газ конденсируется в твердое вещество, минуя жидкую фазу. Образуются более крупные твердые пылевые крупинки – частицы.

Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой – газопылевой диск. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск.

Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости в пылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела – планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась.

Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико – миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды. Протосолнце становится горячим. Его излучение нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения.

Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.

Эволюция Солнечной системы

Как только масса пропланеты достигает 1–2 масс Земли, она способна захватывать атмосферу.

Формирование и эволюция Солнечной системы

Протоюпитер буквально за сотню лет увеличил свою массу за счет захвата газов в десятки раз. Затем скорость аккреции падает, т.к. весь газ непосредственно на пути планеты уже вобран, а снаружи он поступает достаточно медленно (за счет диффузии). В нашей Солнечной системе на периферии образовались планеты-гиганты, способные удержать возле себя газовые оболочки. Сначала сформировались ядра планет-гигантов, а затем планеты «нарастили» себе оболочку из водорода и гелия.

Двухступенчатая модель образования гигантов подтверждается фактами. Массы ядер планет-гигантов примерно одинаковы и равны 15–20 М . Количество водорода уменьшается с увеличением расстояния. Чем больше масса планеты, тем быстрее идет аккреция газа на нее. По современным расчетам, рост Юпитера продолжался десятки миллионов лет, а рост Сатурна – сотни миллионов.

У планет-гигантов возникли собственные минидиски из газа и пыли, из которых затем сформировались кольца и многочисленные спутники. При формировании Юпитера именно в районе его орбиты проходила граница конденсации водяных паров. По современным расчетам, на более близких расстояниях, в поясе астероидов, летучие вещества находились в газообразном состоянии.

Это привело к тому, что рост допланетных тел в районе будущего Юпитера ускорился, а в районе пояса астероидов замедлился. Именно поэтому массивный Юпитер обогнал по скорости роста протопланету, более близкую к Солнцу. Но после своего «рождения» Юпитер стал тормозить образование этой планеты в поясе астероидов. Разогнанные тяготением планет-гигантов сгустки вещества выбрасывались на окраину Солнечной системы, где становились кометами.

Гравитационные возмущения со стороны Юпитера и сейчас сильно воздействуют на астероиды. Уран и Нептун росли еще медленнее. К тому времени газа в Солнечной системе из-за действия солнечного ветра осталось еще меньше, поэтому Уран и Нептун содержат меньше водорода в процентном содержании, чем Юпитер.

Основными составляющими этих планет-гигантов являются вода, метан и аммиак.

В центре Солнечной системы сформировались менее массивные планеты. Здесь солнечный ветер выдул мелкие частицы и газ.

А вот более тяжелые частицы, наоборот, стремились к центру. Рост Земли продолжался сотни миллионов лет. Ее недра прогрелись до 1000–2000 К благодаря гравитационному сжатию и участвовавшим в аккумуляции крупным телам (до сотен километров в поперечнике).

Падение таких тел сопровождалось образованием кратеров с очагами повышенной температуры под ними. Другой и основной источник тепла Земли – распад радиоактивных элементов, в основном, урана, тория и калия. В настоящее время температура в центре Земли достигает 5000 К, что гораздо выше, чем в конце аккумуляции.

Солнечные приливы затормозили вращение близких к Солнцу планет – Меркурия и Венеры. С появлением радиологических методов был точно определен возраст Земли, Луны и Солнечной системы – около 4,6 млрд. лет. Компьютерные эксперименты продемонстрировали замечательное свойство нашей планетной системы: пролет звезды с массой порядка 0,1 массы Солнца через ее внешние области мало изменит орбиты планет земной группы.

Этого нельзя сказать об удаленных объектах, расположенных в облаке Оорта, для которых расстояние от Солнца в сотни раз больше, чем радиус орбиты Земли. Гравитационное поле Галактики возмущает орбиты малых тел на окраине Солнечной системы и даже вызывает их появление внутри орбиты Земли. Что касается Солнца, центрального тела Солнечной системы, то это – типичная звезда главной последовательности, равновесие которой обусловлено равенством сил газового давления и гравитации.

Солнце существует 5 миллиардов лет и еще столько же будет излучать практически неизменный поток энергии вследствие протекающих в его недрах ядерных реакций. Затем, в соответствии с законами звездной эволюции, Солнце превратится в красный гигант, и его радиус значительно увеличится, станет больше орбиты Земли.

После этого газовая оболочка рассеется, и на месте Солнца останется белый карлик.

Этот остаток нашего бывшего светила будет высвечивать запасы тепловой энергии в течение миллиардов лет, постепенно превращаясь в невидимый холодный объект. При этом температура на Земле сначала увеличится до 10 000°C, а затем уменьшится практически до абсолютного нуля.

Современная планетная космогония встречается со многими вопросами, которые требуют строгого решения. Один из таких вопросов – парадокс вращательного момента. Протопланетные диски имеют небольшую массу, в 10–100 раз меньшую центральной звезды. Так, например, в Солнечной системе 99,8 % массы заключается в Солнце. Тем не менее, основной вращательный момент приходится именно на планеты.

Поэтому вопрос о перераспределении вращательного момента из центральной части конденсирующегося газопылевого облака к периферии очень актуален и до сих пор не решен.

Астрономы древности полагали, что Вселенная и Солнечная система существовали вечно и будут существовать еще столько же в неизменном виде.

С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают. В 1745 году французский ученый Бюффон высказал гипотезу, что планеты образовались из вещества, выброшенного из Солнца после столкновения Солнца с кометой. Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении.

Планеты по Канту формируются из того же газопылевого облака, что и Солнце. В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности.

Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму.

Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной.

Гипотеза Джинса образования планет Солнечной системы

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса.

Однако в настоящее время специалисты не поддерживают эту теорию. В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система.

В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали.

Элементы многих из перечисленных выше теорий использует современная космогония.

Как появилось Солнце?

» Солнце » Как появилось Солнце?

Вначале было…

Происхождение и эволюция солнечной системы

Нет, не слово, а почти пустое и очень-очень холодное пространство. Пустое потому, что в нем ничего не было, ну разве что с десяток заблудившихся атомов в каждом кубическом сантиметре этого пространства. А холод стоял просто невыносимый — около -220°С. То есть это было облако чрезвычайно холодного газа. Состояло оно в основном из атомов водорода и гелия. Правда, встречались и микроскопические пылинки размером с тысячную часть миллиметра.

Затем на это газопылевое облако снаружи начало что-то давить.

Это могла быть взорвавшаяся неподалеку звезда, называемая сверхновой. Энергия такого взрыва просто чудовищная, и она распространяется во все стороны в виде ударной волны. Так называется движущаяся в пространстве область чрезвычайно высокого давления.

Ударная волна возникает, например, при преодолении самолетом скорости звука, и мы слышим это как громовой звук, неприятно воздействующий на ушные перепонки. Только сила такой ударной волны ничтожно мала по сравнению с таковой от взрыва звезды.

Под действием ударной волны газопылевое облако стало сжиматься. Атомы и частички сблизились и под влиянием сил гравитации стали притягиваться друг к другу.

Поскольку они очень малы и сила гравитационного взаимодействия между ними тоже ничтожно мала, этот процесс длился очень долго. Астрономы и в наше время нередко обнаруживают холодные, темные, сжимающиеся облака межзвездного газа и пыли, в которых в будущем наверняка вспыхнут новые звезды.

Облако не только сжималось: в нем возникали вихри, то есть круговые вращения в отдельных областях.

Из-за них облако разваливалось на несколько более мелких частей. Одна из них впоследствии стала Солнечной системой со всеми ее «обитателями».

Огромное облако в созвездии Цефея, в котором происходит рождение звезд, подобное тому, что имело место при формировании Солнечной системы. Фото НАСА

Отделившись, часть облакапродолжала сжиматься, ее вращение ускорялось — и она приобрела форму диска.

Это была первичная солнечная туманность, образовавшаяся около 5 млрд лет назад. При поперечнике 10 млрд км (приблизительно размер орбиты Нептуна) туманность имела толщину около 200 млн км (несколько больше расстояния от Земли до Солнца).

Под действием гравитации все больше вещества сжималось к центру диска.

В результате центральные области солнечной туманности оказались значительно горячее, чем внешние. Через 50 млн лет формирование солнечной туманности закончилось.

Вещество продолжало устремляться к центру, и там образовалось протосолнце — «предок» нашего светила. Его температура с самого начала была значительно выше, чем на краях диска.

В этих удаленных от центра областях преобладали частицы межзвездной пыли, покрытые слоем замерзшей воды, углекислого и других газов. Чем дальше от протосолнца находились эти частицы, тем толще был слой покрывающего их льда. Но все эти пылинки — и близкие, и далекие, как и раньше, находились в огромном облаке водорода и гелия — двух основных газов, которые вместе составляли более 95% вещества солнечной туманности.

Частицы пыли слипались при столкновениях.

Такие столкновения со временем привели к образованию «комьев» пыли размерами в несколько миллиметров или даже сантиметров. Под действием гравитации эти комья постепенно оседали ближе к центральной плоскости солнечной туманности. Так продолжалось сотни тысяч лет. За это время большая часть твердого вещества в облаке сформировалась в гигантский плоский слой с протосолнцем в центре.

«Комья» межзвездной пыли постепенно слипались в глыбы размером в несколько километров — так называемые плане-тезимали.

В течение нескольких миллионов лет они постепенно объединялись и уплотнялись в гораздо более крупные тела — протопланеты.

Во внутренних областях первичной Солнечной системы образовалось четыре такие протопланеты, а на большом удалении от протосолнца сформировались еще четыре. Со временем первые стали Меркурием, Венерой, Землей и Марсом.

Они образовались из планетезима-лей, состоявших из каменистого вещества, поскольку все газы испарились под действием тепла протосолнца. А потому эти планеты объединяет сходство строения: это небесные тела с плотными железными ядрами в середине, окруженными слоями менее плотных пород.

Однако планетезимали в далеких холодных областях солнечной туманности содержали значительное количество замерзших газов, в первую очередь метана и аммиака.

Неудивительно, что у второй четверки планет образовались атмосферы из метана, аммиака и других газов.

Пока формировались планеты, к центру протосолца продолжало стягиваться вещество первичного облака — газы. При падении к центру оно уплотнялось, давление там возрастало. По законам физики рост давления ведет к увеличению температуры. Примерно 4,5 млрд лет назад температура в центре достигла такой величины, что там начались процессы термоядерного синтеза. Так называют реакцию превращения водорода в гелий, требующую температуры в миллионы градусов.

Это обычный механизм рождения новой звезды (не путать со сверхновой!). Так возникло и наше Солнце.

На главную книги, на страницу текущей главы

Формирование и эволюция Солнечной системы

Материал из Википедии и видео (фильм компании США Flight 33 Productions и Workaholic Productions).

Согласно современным представлениям, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды Солнца.

Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты,их спутники, астероиды и другие малые тела Солнечной системы.

Гипотеза об образовании Солнечной системы из газопылевого облака — небулярная гипотеза — первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом.

В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (экзопланет), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

В общих чертах, процесс формирования нашей системы можно описать следующим образом:
Спусковым механизмом гравитационного коллапса стало небольшое(спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва сверхновой, и др.), которое стало центром гравитационного притяжения для окружающего вещества — центром гравитационного коллапса.

Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений.

Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака.

Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия.

Наиболее сильно нагревались центральные области диска.
При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться — сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну
В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского.

Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии[3], в то время как в результате другого был рождён спутник Земли Луна. Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет.

По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими.

Происхождение и эволюция солнечной системы

Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы.

По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500—600 миллионов лет после формирования Солнечной системы.

Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад — почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы.

Доказательствами этого служат столкновение кометы Шумейкера—Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников
Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел.

Различают три основных механизма их формирования:

Формирование из около-планетного диска (в случае газовых гигантов)
формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
захват пролетающего объекта
Юпитер и Сатурн имеют много спутников, таких как Ио, Европа, Ганимед и Титан, которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца.

На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Лекция 6.3 | Эволюция планетных систем. Происхождение планет и их спутников | Владимир Сурдин Лекториум Опубликовано: 31 мая 2016 г.

Сурдин — Владимир Георгиевич Сурдин (род.

1 апреля 1953 года, г. Миасс) — советский и российский астроном и популяризатор науки. Кандидат физико-математических наук, доцент. Старший научный сотрудник Государственного астрономического института имени П. К. Штернберга, доцент физического факультета МГУ. Лауреат Беляевской премии и премии «Просветитель» за 2012 год.Владимир Сурдин является автором и редактором нескольких десятков научно-популярных книг по астрономии и астрофизике, а также множества научно-популярных статей, очерков и интервью.

За цикл научно-популярных статей удостоен Беляевской премии. Читает популярные лекции в Политехническом музее. , входит в состав редколлегии её печатного органа — бюллетеня РАН «В защиту науки».

Страница Сурдина со всеми изданными книгами и лекциями, которые учавствуют в нескольких крупнейших общеросиийских образовательных проектах.

http://lnfm1.sai.msu.ru/~surdin/

Есть еще документальные фильм серии Вселенная (2007-2012 г) 7 сезонов.
Программа создана компаниями США Flight 33 Productions и Workaholic Productions.

6 сезон 3 серия 2011 год. Как создавалась Солнечная система Все предыдущие копии и ссылки на списки серий перестали работать, а видеоматериалы заблокированы правообладателями. Ну и они значительно устарели, хотя это и было красивое в основном мультяшное кино для детей (анимация имитации движения обьектов солнечной системы там около 80%).

Кто хочет может поискать по названию, я просто устала бегать по книге и стирать очередной исчезнувший ролик.

Протопланетное облако. Сплюснутое газопылевое облако, вращающееся вокруг звезды, из которого путем сгущения в разных его участках вещества могут образоваться планеты и меньшие тела. Все члены Солнечной системы, по расхожей гипотезе, зарождались около 5 млрд. лет назад в таком облаке.

Слайд 17 из презентации «Возникновение планет».

Размер архива с презентацией 862 КБ.

Скачать презентацию

Астрономия 11 класс

краткое содержание других презентаций

«Планеты-гиганты Солнечной системы» — Плоская форма колец.

Английский астроном Дж. Адамс. Общее у планет-гигантов. Атмосфера Сатурна. Краткая характеристика Юпитера. Важнейшая особенность. Камеры автоматического корабля. Кольца Юпитера. Стратосфера. Структура. Гиперион. Аммиак.

Протей. Атмосфера Нептуна. Атмосфера Юпитера. Галатея. Интересные факты о Юпитере. Атмосфера. Умбриэль. Внутренняя структура Урана. Миранда. Облака на северном полюсе.

«Учёный Галилей» — Наблюдал у Венеры фазы, подобные фазам Луны. Галилей происходил из знатной, но обед-нейшей дворянской семьи. Экспериментальный подход к изучению явлений природы. В настоящее время термометр представляет эстетическую ценность в качестве предмета интерьера.

В зависимости от размера термометра количество поплавков внутри бывает от 3-х до 11-ти. Европа. Каллисто. Вклад в развитие физики и астрономии.

Воздух имеет вес.

«Влияние Солнца на жизнь Земли» — Солнце является источником света. Влияние Солнца на человека. Гипотеза. Роль Солнца в жизни животных. Жизнь без Солнца невозможна. Роскошь растительности. Солнце влияет на жизнь. Роль Солнца в жизни человека. Тепло. Солнце – главный источник света на Земле. Как влияет солнечная погода на ваше настроение.

Солнце без огня горит.

4.1. Формирование и эволюция Солнечной системы

Жизнь без Солнца. Роль Солнца в жизни растений. Положение Солнца. Отрицательное влияние Солнца.

«Глушко» — Почетный гражданин 8 городов. Глушко Валентин Петрович.

Постановление Особого Совещание. Арестован органами НКВД. Академик АН СССР. Кратер. Похоронен на Новодевичьем кладбище. Был главным редактором нескольких изданий энциклопедии "Космонавтика". Научно-популярные и научные работы. Назначен генеральным конструктором. Основоположник отечественного ракетного двигателестроения.

«Движение небесных тел» — Осеннее небо: Пегас, Андромеда, Персей, Кассиопея, Рыбы, Овен, Телец. Весь небесный свод. Видимое движение Марса среди звёзд с июня по декабрь 2003 года. Орбиты планет лежат примерно в одной плоскости. Ближайшее полное теневое лунное затмение. Зимняя часть эклиптики. В созвездии Тельца находится знаменитое звёздное скопление Плеяды. Созвездия Большой и Малой Медведицы. Звёзды Ориона и ярчайшая звезда неба – Сириус.

«Звёзды» — Жизнь звёзд одинакова.

Молодой пульсар. Скопление M19 (NGC 6273). M50 — тусклое звездное скопление. Когда водород в основном выгорит, звезда ещё более сжимается. Звезды-загадочные светила. Звёзды, аналогичные нашему Солнцу, являются основным населением.

Звездное скопление. Нейтронная звезда сжата. Звезда в туманности Eta Carinae. Окружающий нас звёздный мир удивительно многообразен. Супергигантская звезда.

Всего в теме «Астрономия 11 класс» 30 презентаций

5klass.net>Астрономия 11 класс>Возникновение планет> Слайд 17

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *