Эмбриональное развитие рыб


Эмбриональный период развития карпа

Карп откладывает икру на расти­тельность в стоячей или слабопроточной воде при температуре обычно 17 °С и выше. Его развитие в раннем периоде онтогенеза проходит в этих условиях и приспособлено к ним. Икра обычно желтого цвета, но встречаются икринки с зеленова­тым оттенком, бесцветные и др. Средний диаметр икры 1,5-1,8 мм с небольшим перивителлиновым пространством (относительные разме­ры 1,25-1,4 мм), она полиплазматическая. По количеству цитоплазмы занимает одно из первых мест среди икры рыб семейства карповых. Диаметр желточного мешка в среднем 1,2 мм. Оболочка икры клейкая. Продолжительность развития икры карпа до вылупления эмбрионов зависит, прежде всего, от температурных условий. Однако для развития икры и вылупления необходимо, как установлено, опреде­ленное количество тепла. Для карпа этот показатель составляет 60- 80 градусо-ч.

Продолжительность развития икры рыб находится в зависимости от темпе­ратуры воды. Продолжительность эмбрионального развития икры карпа в зависимости от температуры приведена в таблице 1 (по данным Ф. М. Суховерхова и А. П. Сиверцева).

Таблица 1 — Продолжительность эмбрионального развития икры карпа в зависимости от температуры воды

Температура воды, °С Продолжительность инкубации, сут
2,5 -3
3,5 -4,0
4,5 -5,0
7,0 -7,5
Ниже 16 более 8

Эмбриональный период развития карпа состоит из семи этапов (по Лужину, 1976).

На первом этапе происходит оплодотворение, образование зиготы и образование перивителлинового пространства и бластодиска (рис. 27 а, б).

У неоплодотворенной икринки (рис. 27, а) оболочка плотно прилегает к желтку. Через несколько минут после оплодотворения в икре, находящейся в воде, происходят изменения, связанные с про­никновением воды в икринку. Это приводит к отслоению оболочки от желтка, образованию перивителлинового пространства. Процесс набухания икры при температуре 19 °С длится примерно один час. Диаметр икры увеличивается в среднем на одну треть. Одновременно в период набухания образуется зародышевый диск, или бластодиск (рис. 27, б).

Активация икринок, вызванная оплодотворением, приводит к глубоким изменениям обмена веществ. В течение первого часа после оплодотворения, когда наступает резкое оводнение икринок, относи­тельное содержание сухих веществ снижается с 30-32 до 10-12 % и примерно в таком количестве остается до вылупления эмбриона. Содержа­ние гликогена — основного источника энергии в период образования бластодиска — уменьшается в 2 раза, а величина аденозинтрифосфорной кислоты (АТФ), занимающей центральное место в энергетическом обмене, снижается почти в 3 раза.

На втором этапе происходит дробление бластодиска от двух бластомеров до бластулы. В возрасте трех часов наступает первая стадия этапа дробления — появляется первая борозда, деля­щая бластодиск на два бластомера (рис. 27, в), а затем наступают стадии четырех (рис. 27, г), восьми (рис. 27, д) бластомеров и т.д.

Через 6 ч от момента оплодотворения наступает стадия морулы крупных клеток (рис. 27, е). Далее клетки бластодиска все больше дробятся. Наступает стадия морулы мелких клеток. Между бластодиском и желтком возникает небольшая полость или бластоцель и образуется стадия бластулы (рис. 27, ж). Бластула — это своеобразное многоклеточное образование – бластодерма, расположенная на анимальном полюсе.

В целом процесс дробления сопровождается значительными внутренними энергетическими затратами. За этот период показатель АТФ снижается почти в два раза.

Обозначения по тексту

Рисунок 27 — Эмбриональный период развития карпа

В рыбоводной практике на стадиях 4-8 бластомеров второго этапа развития дают оценку качества икры по нормальному дроблению. Образование разноразмерных, асимметрично расположенных бластомеров свидетель­ствует об аномальном развитии икры. Именно на стадиях дробления от 4- 8 бластомеров до ранней морулы определяют и процент оплодотво­рения икры.

На третьем этапе происходит обрастание желтка бластодер­мой — гаструляция и формирование эмбриона. Гаструляция начинается с обрастания желтка многослойной бластодермой. Через 8-9 ч полови­на желтка оказывается схваченной бластодермой (рис. 27, з). Появляет­ся зародышевый валик, который на стадии замыкания желточной пробки (рис. 27, и) виден весьма отчетливо. У тела эмбриона заметен расширенный головной отдел. Желточная пробка замыкается. Гастру­ляция завершается полным обрастанием бластодермой всего желтка.

Во время гаструляции происходит существенная структурная перестройка, в результате которой образуются три зародышевых листка: эктодерма, мезодерма и энтодерма. Обмен веществ во время гаструляции имеет свои особенности. После гаструляции количество фосфора АТФ и небелкового азота снижается, а количество общего бел­ка увеличивается. Процесс гаструляции является наиболее уязвимым к воздействию факторов внешней среды. Гаструляция всегда сопро­вождается повышенной гибелью икры. Поэтому учет отхода целесо­образно проводить после прохождения этого этапа развития, а не раньше.

На четвертом этапе происходит дифференциация головного и туловищного отделов эмбриона. Наблюдается утолщение головной и хвостовой частей эмбриона. Через 17-20 ч от оплодотворения икры тело эмбриона охватывает около 3/5 окружности желтка. Начинается сегментация тела. В туловище образуются первые два-три сомита (рис. 27, к). В возрасте 22-24 ч формируются глазные пузырьки при продолжающейся сегментации тела (рис. 27, л). Через 24-28 ч за глазны­ми пузырями в области продолговатого мозга появляются слуховые плакоды (рис. 27, м). Количество сомитов достигает 9-11. Глазные бокалы (зачатки глаз) приобретают щелевидные углубления.

На пятом этапе обособляется хвостовой отдел и эмбрион начинает двигаться. В результате обособления хвостового отдела и роста в длину зачатка кишечной трубки желток приобретает груше­видную форму. Через 35-45 ч в глазах отчетливо виден хрусталик (рис. 27, н). Количество сомитов продолжает увеличиваться (более 20). Тело эмбриона совершает слабые движения. В возрасте немногим более двух суток наблюдается сегментация хвостового отдела. К этому времени сегментация тела почти заканчивается. В глазах появляется черный пигмент. Различаются отделы головного мозга. В слуховых капсулах образовываются отолиты (рис. 27, о). При обособле­нии хвостового отдела и пигментации глаз наступают определенные изменения в обмене веществ: показатель АТФ вновь возрастает до исходной величины, однако содержание белка и небелкового азота остается прежним, как при гаструляции.

На шестом этапе в возрасте 2,5 сут у эмбриона появляются форменные элементы крови. Число сомитов в туловище 24, в хвосто­вом отделе — 16. Глаза пигментированы (рис. 27, п). Сформировалась кожная жаберная крышка. Голова пригнута к желтку. На рыле, перед глазами появились обонятельные ямки. Снизу образовалась ротовая воронка. Позади глаз появились четыре жаберные плакоды. На уровне первого миотома располагается грудной плавничок. Эмбрион активно вращается в оболочке – стадия вращающегося эмбриона.

Эта стадия эмбрионального развития карпа, как и других рыб, наиболее подходит для перевозки икры в условиях изотермических ящиков, где возмож­но некоторое охлаждение, способствующее замедлению развития.

На седьмом этапе происходит вылупление из оболочки. Это последний этап эмбрионального периода развития. Через трое суток инкуба­ции икры при температуре 19-22 °С начинается вылупление эмбрионов (рис. 27, р).

Эмбрионы рыб в процессе эмбрионального развития проходят ряд критических этапов и стадий, когда наблюдается повышенная чувствитель­ность эмбрионов к различным абиотическим факторам среды (темпера­туре, газовому составу воды, солености, механическому воздействию и др.). Это связано с тем, что в критические этапы и стадии развития происходят значительные изменения в перестройке обмена веществ развивающегося эмбриона.

Критическими в развитии эмбриона карпа, как у боль­шинства нерестящихся весной рыб, являются следующие этапы и стадии:

— от начала дробления до морулы мелких клеток;

— гаструляция;

— перед вылуплением и вылупление.

Именно на этих стадиях эмбриогенеза, наблюдается повышенная гибель эмбрионов. В эти моменты необходимо особенно стремиться к созданию оптимальных условий для развития икры: поддерживать в инкубационных аппаратах постоянный и повышенный расход воды, не допускать резких (более 2 °С) температурных перепадов, оберегать икру от различных механических воздействий и т. д.

Дата добавления: 2016-08-06; просмотров: 3132;

Похожие статьи:

Рис. 36

1.3 Постэмбриональное развитие

Период постэмбрионального развития осетровых рыб (36 – 45 стадии).

Стадия 36 — массовое вылупление (рис.

37). Форма желточного мешка яйцевидная. В глазу четкое пигментное пятно. В жаберной области обозначились складочки 2 первых жаберных карманов. На нижней поверхности головы заметно ротовое углубление. Жаберных щелей и ротового отверстия еще нет. Позади почек едва заметны зачатки грудных плавников. Кровь желтовато-розовая. Описание москва-витебск автобус на нашем сайте.

Рис. 37

Стадия 37 — появляются зачатки усиков (рис.

38); прорывается ротовое отверстие. Начинается разделение желточного мешка на желудочный и кишечный отделы. Четко выражены зачатки грудных плавников в виде небольших складочек кожи. Зачатки жаберных лепестков отсутствуют. Появляется зачаток боковой линии сейсмосенсорной системы.

Рис. 38

Стадия 38 — различимы первые меланоциты (рис. 39). Энтодермальная складка, отделяющая желудок от кишечника, неполная.

Формируются первые мускульные почки в области спинного и анального плавников. Появляется зачатки жаберных лепестков на жаберной крышке и первой жаберной дуге. Боковая линия сейсмосенсорной системы достигает уровня кювьерова протока.

Рис.

39

Стадия 39 — желудок отделен от кишечника; обособились спинной и анальные плавники (рис. 40). Боковая линия сейсмосенсорной системы достигает уровня заднего грудного плавника; появляется добавочный ряд сейсмосенсорной системы.

Рис.

40

Стадия 40 — различим зачаток брюшного плавника в виде узенькой складочки кожи (рис. 41). Брюшные отростки мышечных сегментов в области грудного плавника спускаются ниже его основания. Можно наблюдать первые не регулярные движения нижней челюсти. Боковая линия сейсмосенсорной системы не достигает уровня конца желудка, добавочный ряд заканчивается над грудными плавниками.

Рис. 41

Стадия 41 — края обонятельных лопастей смыкаются, но еще не сращены (рис. 42). Боковая линия сейсмосенсорной системы заканчивается над спиральной кишкой, ее добавочный ряд заходит за заднюю границу грудного плавника, образуется короткий зачаток спинного ряда.

Эмбриональное и раннее постэмбриональное развитие рыб

Рис. 42

Стадия 42 – появляется зачаток пилорического придатка (рис. 43).

Лопасти обонятельного органа сращены. Боковая линия сейсмосенсорной системы достигает уровня переднего края брюшного плавника: спинной ряд начинает изгибаться.

Рис.

43

Стадия 43 — рострум принимает горизонтальное положение (рис. 44).

Брюшной плавник достигает края прианальной складки. Появляются зачатки вторичных лепестков в первой жабре. Боковая линия сейсмосенсорной системы достигает уровня заднего края брюшного плавника, добавочный ряд заканчивается над спиральной кишкой, спинной ряд изогнут, и начинает расти параллельно боковой линии.

Страницы: 2345678

Прочие статьи:

Эмбриональное и раннее постэмбриональное развитие рыб

В первые мгновения после оплодотворения оболочки икринки прилегают к поверхности желтка.

Затем кортикальные альвеолы, располагающиеся в поверхностном слое цитоплазмы, лопаются, их содержимое выделяется под оболочку и она отслаивается от желтка. Начинается оводнение (набухание) икринки, в процессе которого между желтком и оболочкой образуется перивителлиновое пространство, заполненное жидкостью. Эта жидкость обеспечивает обмен зародыша и защищает его от воздействия внешней среды.

Перивителлиновое пространство образуется и в неоплодотворенной икринке после попадания ее в воду.

Так как перивителлиновое пространство препятствует проникновению сперматозоидов, то после его образования икринка теряет способность к оплодотворению.

Внешняя оболочка икринки многих рыб выделяет клейкое вещество, благодаря которому в естественных условиях икринки прилипают к субстрату.

После набухания прочность оболочек возрастает. Яйца костистых рыб относятся к телолецитальному типу. В них желток распределен неравномерно: ядро и плазма располагаются на анимальном полюсе, а желток концентрируется в противоположной части клетки на вегетативном полюсе. В результате дробление охватывает не всю клетку, а только бластодиск (неполное, или дискоидальное, дробление, при котором борозды дробления проходят только по бластодиску).

Внешним признаком развития икринки является скопление плазмы на анимальном полюсе и образование бластодиска.

Развитие идёт по общеизвестной схеме: дробление бластодиска (с образованием сначала крупноклеточной, затем мелкоклеточной морулы); появление бластулы, внутри которой имеется первичная полость тела – бластоцель; в результате продолжающегося размножения клеток – наступление гаструляции, в процессе которой клетки анимального полюса надвигаются на желток (обрастание желтка), образуется два зародышевых листка (экто и энтодерма); полость гаструлы представляет собой первичную полость кишечника.

Затем между двумя эмбриональными пластами образуется третий (мезодерма); внутри мезодермы развивается вторичная полость тела, или целом. Далее зародышевые листки дифференцируются на зачатки тканей и органов: из эктодермы формируются покровы (эпидермис), нервная система; из энтодермы – кишечник и связанные с ним органы; из мезодермы –внутренний скелет, мускулатура, соединительнотканный слой кожи, аорта и кардинальные вены, эндокардий сердца и др.

Эмбриональный период развития рыб не заканчивается выходом зародыша из оболочки.

Он продолжается в течение некоторого времени после выклева, пока предличинка, или свободный эмбрион, обладая ещё рядом эмбриональных особенностей строения органов дыхания, кровообращения, пищеварения и других систем, проходит заключительные этапы эмбрионального развития.

После того как начинают функционировать жаберная, пищеварительная и другие системы, деятельность эмбриональных органов прекращается и соответственно кончается период эмбрионального развития.

Следующий период – личиночный – начинается с момента перехода молоди на активное питание внешней пищей.

Сначала питание смешанное – остатками желточного мешка и частично внешней пищей, затем полностью экзогенное. Имеются временные личиночные органы (непарная плавниковая кайма, наружные жабры и т. д.), отсутствуют многие органы взрослой рыбы.

При переходе в следующий период развития – мальковый молодь приобретает форму взрослой рыбы; появляется чешуя, характерные для взрослого органы и функции (например, брюшные плавники и жаберное дыхание через рот), но некоторые органы могут ещё отсутствовать, например каналы боковой линии.

Личиночные органы исчезают.

Для примера рассмотрим развитие карпа в нерестовом пруду (при температуре воды 20–22°С).

В течение первых суток проходят этапы, предшествующие оформлению тела зародыша.

Образование бластодиска (1-й этап). Начинается сразу после оплодотворения. Примерно через 30 мин в икринках между желтком и наружной оболочкой возникает перивителлиновое пространство, занимающее 3,4–15,4 % диаметра икринки. На анимальном полюсе икринки формируется бластодиск в виде возвышающегося над желтком светлого бугорка.

Дробление бластодиска (2-й этап).

Бластодиск разделяется бороздами дробления на бластомеры.

Сначала наблюдается морула крупных клеток, но по мере того, как возрастает число бластомеров, размеры их уменьшаются. Примерно через 5 ч после оплодотворения наблюдается морула мелких клеток.

Бластула (3-й этап). Бластомеры уплотняются и отодвигаются к периферии.

Образуется бластула, внутри которой имеется полость – бластоцель; желток образует впячивание навстречу накрывающей его бластодерме.

Гаструла (4-й этап). При дальнейшем размножении клеток анимального полюса происходит обрастание желтка: бластомеры как бы сползают в сторону вегетативного полюса, постепенно накрывая его; образуется зародышевый узелок; формируются зародышевые пласты, а из них зачатки органов.

К концу первого дня после оплодотворения в икринке имеется зародыш в виде прозрачной зародышевой полоски, лежащей на желтке.

Произошла закладка головного и туловищного зачатков, причём головной конец заметен резче, хвостовой конец утончается постепенно, ограничиваясь едва заметно; выявляются участки эмбрионального материала, которые дадут начало хорде, миотомам, кишечной энтодерме, нервной и другим системам.

В течение вторых суток проходят следующие три этапа.

Органогенез (5-й этап). Зародыш увеличивается в размерах: тело утолщается, хвостовой отдел оканчивается перед головным, немного не доходя до него. Формируются головной, туловищный, хвостовой отделы тела и основные органы и системы органов: нервная, мышечная, кишечник и т. д. Примерно через 28 ч после оплодотворения в головном отделе хорошо виден мозг, причем заметно разделение его на передний и задний отделы, четко различимы слуховые пузырьки, глаза продолговатой формы, ещё не имеющие пигмента.

В туловищном отделе происходит сегментация хорды. Примерно через 32 ч. после оплодотворения хорошо заметна плавниковая кайма, начинающаяся на спинной стороне тела в задней его трети. Кайма огибает хвостовой отдел и подходит к желтку. Видны также плавниковые складочки на желтке.

Появляется нервно-мышечная моторика (6-й этап).

Зародыш начинает временами подергиваться, а затем периодически поворачивается в оболочке. Так как зародыш в это время дышит поверхностью тела (специальных органов дыхания нет), то перемешивание перивителлиновой жидкости при таких поворотах способствует улучшению газового обмена.

Зародыш настолько увеличивается, что хвостовой отдел начинает заворачиваться по поверхности желтка, образуя спираль.

В головном отделе просматриваются обонятельные ямки, глазные бокалы, хрусталики, отолиты. В глазах появляется точечный меланин. Сердечная трубка сокращается, но форменных элементов крови ещё нет. Хорошо видна кишечная трубка. Продолжается сегментация тела (в хвостовом отделе). Желточный мешок становится грушевидным.

Начинает функционировать эмбриональная дыхательная система (7-й этап).

Так как дефинитивные органы дыхания ещё не сформированы, то дыхательную функцию выполняет сеть кровеносных сосудов: Кювьеровы протоки (лежащие на передней части желточного мешка), нижняя хвостовая вена (в хвостовом отделе тела), сеть сегментальных сосудов в плавниковой кайме (в анальной ее части). В токе плазмы крови появляются форменные элементы.

Заканчивается сегментация тела. Появляются грудные плавнички. Усиливается пигментация глаз. Примерно через 52 ч после оплодотворения появляются пигментные клетки над кишечной трубкой, вскоре покрывающие головку зародыша, спинной и хвостовой отделы и желточный мешок. Пигментные клетки (меланофоры) крупные, лежат близко друг к другу (группами). На голове видны зачатки жаберных крышек. На голове и желтке появляются железки вылупления.

К концу вторых – началу третьих суток после оплодотворения начинается последний – 8-й этап развития зародыша в оболочке.

Увеличиваются все части тела и просвечивающие сквозь прозрачные покровы органы. Головка зародыша частично обособляется от желтка. В слуховых пузырьках видны полукружные каналы. Отчетливо видна ротовая ямка (рот неподвижный, открытый). Оформляется жаберно-челюстной аппарат. В передней части головы видны клетки, образующие железки приклеивания. Основания грудных плавников расположены наклонно по отношению к оси тела.

В плавниковой складке обособляются спинной, хвостовой и анальный участки. Усиливается пигментация тела.

Примерно через 78 ч после оплодотворения начинается массовый выклев молоди. Выклюнувшиеся зародыши, или предличинки (этап развития А, или последний зародышевый), имеют около 5,0–5,2 мм длины. Обращает на себя внимание большой желточный мешок грушевидной формы и прямая (не изогнутая) хорда. Голова немного пригнута вниз.

В передней части ее, ближе к глазам, имеются углубления – обонятельные ямки. Хорошо видны сегменты (их насчитывается 38), не одинаковые по величине, они постепенно уменьшаются к заднему концу тела. По спине зародыша, начиная с 9-го сегмента, тянется вдоль тела плавниковая кайма, переходящая на хвост, далее на брюшную сторону и оканчивающаяся на желточном мешке. В хвостовой части плавниковая кайма разделяется задним концом хорды на две равные половины. Плавниковая кайма узкая, недифференцированная, без выемок, расширяется только в хвостовой части, прозрачная, чуть-чуть уплотненная с прилегающей к телу стороны; в спинной и анальной частях пронизана кровеносными сосудами.

Грудные плавнички подвижны. Глаза сильно пигментированы. По телу разбросаны пигментные клетки; больше всего их на голове и вдоль спинного и брюшного краев тела, лежат они и на желточном мешке. На голове и спине имеется также желтоватый пигмент.

На переднем краю головы зародыши имеют железу приклеивания, позволяющую им прикрепляться к подводным растениям. Сквозь прозрачное тело просвечивают внутренние органы: сердце в околосердечной сумке, кишка, прямая, ещё без просвета, не вполне сформированный жаберный аппарат – только начальные жаберные дужки прикрыты намечающейся жаберной крышкой, два отолита в слуховой капсуле.

Рот открыт, имеет форму ямки.

В течение 1-х суток жизни после выклева зародыши движутся периодически; время от времени, приклеившись к растениям, они висят неподвижно, покойно; затем, оторвавшись от субстрата, проделывают несколько червеобразных движений, после чего опять приклеиваются.

Таким образом чередуются состояния движения и покоя.

При указанных температурах преобразования зародышей протекают быстро. Уже к концу первого дня их жизни (длина 6 мм) желточный мешок оказывается сильно втянутым. На 2-е сутки жизни (длина 5,9–6,7 мм) зародыши имеют сравнительно небольшой желточный мешок.

Уменьшение желточного мешка происходит по всей площади соединения его с зародышем, но быстрее в передней расширенной части. В плавниковой кайме, особенно в нижней части хвостового отдела, уплотнённые участки (скопления мезенхимных клеток) становятся более значительными. Зародыши больше не приклеиваются к растениям, они постоянно плавают.

На 3-й сутки жизни (этап развития В, или первый личиночный) при длине тела 6,2–7,8 мм у молоди остается совсем мало желтка. Хорда по-прежнему оканчивается прямо – она не изогнута.

У особей длиной около 7 мм дифференциации плавниковой каймы ещё нет, но в хвостовой части в нижней половине намечаются мезенхимные тяжики. Пигментных клеток становится больше. Жаберная крышка прикрывает не все жаберные дужки. Линия основания грудных плавников становится вертикальной. Кровь начинает окрашиваться, приобретает очень слабый жёлто-розовый оттенок.

Кишечник представляет собой едва изогнутую трубку, но уже с просветом. Молодь заглатывает воздух, плавательный пузырь (задняя камера) наполняется им и становится хорошо видным.

Наполнение плавательного пузыря воздухом облегчает передвижение рыбок. Части ротового аппарата могут двигаться.

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ РЫБ

Рот перемещается на конец рыла.

Молодь переходит к активному питанию (внешней пищей). Таким образом, в это время у личинок питание смешанное: как внешней пищей, так и за счет не совсем израсходованного желточного мешка. Вследствие прозрачности тела хорошо видно содержимое кишечника.

На 4-е сутки жизни (этап развития С1; или второй личиночный)длина личинок достигает 5,5–9,0 мм. Самые мелкие из них имеют ещё остатки желтка.

Рот приобретает способность закрываться полностью.

У личинок, достигших длины около 8,3 мм, задний конец хорды – уростиль – начинает загибаться кверху. Зачатки лучей в нижней половине хвостовой части плавниковой каймы увеличиваются. Плавниковая кайма в передней части (на спине) становится более высокой, здесь появляется сгущение мезенхимных клеток. Такое же сгущение мезенхимы наблюдается в анальной части каймы, на месте будущего анального плавника.

Перед хвостом плавниковая кайма становится немного уже, тем самым намечаются границы хвоста.

Пигментных клеток становится очень много, они крупные, разбросаны по всему телу. Особенно крупны они на спинной стороне головы.

Жаберные крышки увеличиваются. Личинки уже заглатывают циклопов, босмий и других мелких ветвистоусых и веслоногих рачков.

На 5-е сутки жизни (этап развития С2, или третий личиночный)при длине 7,0–10,1 мм личинки отличаются от предыдущих в основном тем, что у них сильнее загнут уростиль, хвост стал гетероцеркальным, в плавниковой кайме резче выделяется хвостовой отдел, в котором лучи уже сформировались; в спинном и анальном отделах плавниковой каймы сгущения мезенхимы стали плотнее.

На челюстях появляются роговые зубы. В пищевом комке кроме коловраток, ветвистоусых и веслоногих рачков начинают встречаться планктонные личинки хирономид.

На 6-е сутки жизни (длина 8,2–11,3мм) личинки своим общим видом напоминают уже больше рыбку, чем личинку.

Головка из закругленной становится вытянутой. Жаберные крышки закрывают все жаберные дужки. Хвостовой отдел на плавниковой кайме ограничивается четче, мезенхимные сгущения в спинном и анальном участках каймы уплотняются. Тело личинок становится менее прозрачным, сегменты видны плохо, только в задней части.

На 8-е сутки жизни личинки достигают длины 10–12,8 мм. Меньшие из них прошли этап развития D1,, или четвертый личиночный, у наиболее крупных развитие продвинулось до этапа D2 –пятого личиночного.

Сегменты в теле видны совсем плохо.

Уростиль сильно загибается кверху, образуя почти прямой угол с плавниковыми лучами. В плавательном пузыре обе камеры наполнены воздухом. На месте брюшных плавников появляются кожистые выросты. Плавниковая кайма ясно дифференцирована, спинной отдел ее имеет лучи, в анальном ее отделе также появляются зачатки лучей. Хорошо видны кости черепа. У наиболее крупных рыбок хвостовой отдел представляет собой сформированный хвостовой плавник (гомоцеркальный); появляется хвостовая выемка, раздваивающая плавник на верхнюю и нижнюю лопасти.

Спинной плавник также вполне сформирован. Грудные и брюшные плавники ещё не имеют лучей. Все тело очень сильно пигментировано. Рот становится выдвижным. Кишечник слабо изогнут, намечается первая петля.

На 11-е сутки жизни (длина 11,1 – 16,0 мм) у личинок спинной и анальный участки плавниковой каймы приобретают форму плавников. С хвостовым плавником они соединяются совсем узенькими перетяжками.

Лопасти брюшных плавников становятся крупнее, но лучей в них ещё нет. Пигментные клетки очень крупные. В кишечнике образуется первая петля.

На 13-е сутки жизни (длина 12–13 мм) остатки плавниковой каймы между плавниками становятся еле заметными. Тело почти непрозрачно, лишь слабо просвечивает кишечник.

На 14-е сутки жизни (этап развития Е, или шестой личиночный)при длине тела 15–20 мм никаких следов плавниковой каймы между плавниками нет.

В брюшных и грудных плавниках появились лучи. Тело непрозрачно, его почти сплошь покрывают пигментные клетки. В кишечнике стало две петли. Чешуи ещё нет. Дальнейшее развитие происходит в выростном пруду.

В течение развития у зародыша чередуются периоды усиленного роста тканей и периоды усиленной дифференцировки их и образования новых зачатков органов. При этом меняется характер обмена веществ, в частности интенсивность водного обмена, интенсивность усвоения биогенных элементов (фосфора, кальция, углерода), аминокислотный состав тела (уменьшается число свободных аминокислот, увеличивается количество связанных), интенсивность потребления кислорода.

Наиболее интенсивен обмен во время формирования органов и тканей. Чувствительность зародышей к внешним воздействиям – тряске, колебаниям температуры, содержанию кислорода – на разных стадиях развития различна. Наименее устойчивы зародыши во время усиленного формирования тканей и органов, когда обмен наиболее интенсивен.

Это начало дробления, гаструляция, закрытие бластопора, начало формирования зародыша и т. д. Это обстоятельство учитывается при работах с икрой, особенно при ее перевозках.

Инкубация икры рыб каждого вида проходит при определённых условиях внешней среды (температура, содержание кислорода и углекислоты, рН, освещенность, соленость и т. д. ).

Исход инкубации определяется также качеством икры. Оно связано с видом рыбы, ее возрастом, условиями содержания и в предыдущий год, и особенно перед нерестом, временем взятия икры от самок, а при искусственном осеменении – с техникой проведения всех операций.

Длительная задержка икры в полости тела самки вызывает перезревание.

Перезревшая икра характеризуется пониженной оплодотворяемостью, повышенным отходом в период инкубации, увеличенным числом уродов и самцов.

Невыметанные зрелые половые продукты рассасываются. Но это длительный процесс. Поэтому если нерест почему-либо не прошел (например, из-за похолодания), то очередной нерест на следующий год также может не состояться, так как в гонадах не успеют пройти процессы резорбции зрелых невыметанных клеток и образования клеток новых генераций.

Продолжительность инкубации при прочих равных условиях зависит от температуры: чем она выше, тем развитие происходит быстрее.

У рыб, выметывающих икру весной и летом, при высоких температурах, развитие длится несколько дней; у рыб с осенне-зимним нерестом – несколько месяцев.

Успешнее всего инкубация проходит при оптимальной температуре. При повышенной она хотя и заканчивается быстрее, но молодь выклевывается мелкой и недоразвитой, а при понижении температуры зародыши более крупные, но нарушается процесс выклева.

При отклонении температуры повышается количество уродов –особей с укороченным туловищем, искривлением позвоночника, водянкой околосердечной и брюшной полости, а также двухголовых экземпляров, срастающихся разными участками туловища, особей с аномалиями челюстного аппарата и т. д.

Для учета длительности развития существует понятие “градусо-дни”.

Это произведение средней температуры инкубации на число дней развития икры. Оно дает общее представление о сумме тепла, необходимого для развития молоди до выклева.

Но это не постоянная величина, она имеет разные значения при разных температурах. У карпа развитие длится 54–126 градусо-дней, у радужной форели – 330–400. При неблагоприятных условиях, например при недостатке кислорода, продолжительность развития удлиняется.



Дробление яйцеклетки частичное, неравномерное, или дискоидальное. Процесс дробления охватывает лишь незначительную часть анимального полюса и ведет к образованию дискобластулы. Бластодерма дискобластулы у этих животных называется бластодиском или зародышевым диском, а дно бластулы образовано поверхностным слоем недробящегося желтка – перибластом.

Тема 2. ЭМБРИОНАЛЬНЫЙ, ЛИЧИНОЧНЫЙ И МАЛЬКОВЫЙ ПЕРИОДЫ РАЗВИТИЯ КАРПА

Клетки бластодиска, размножаясь, образуют многослойный бластодиск, который из круглого становится овальным, и верхний слой его клеток приобретает эпителиоподобную форму (рисунок 1.5).

1– бластомеры; 2– перибласт; 3– мероциты; 4– желток; 5 – бластоцель

Рисунок 1.5Последовательность (IV) дробления зародыша ската

Образование двухслойного зародыша происходит путем инвагинации.

Гаструляция начинается с перемещения клеток к заднему краю бластодиска, который утолщается и начинает подворачиваться через собственный край, образовывая энтодерму и эктодерму.

Край бластодиска, через который осуществляется подворачивание клеточного материала, или инвагинация, называют краевой зарубкой. Последняя и является бластопором. Средняя часть краевой зарубки соответствует верхней, или спинной, губе, а боковые ее части – боковым губам бластопора. Полость впячивания, располагающаяся между энтодермой, и нераздробленным желтком, соответствует полости первичной кишки. Энтодерма в своей средней части содержит клеточный материал хордальной пластинки, а по бокам – материал мезодермы, вначале сегментированной, а по краям краевой зарубки несегментированной.

Таким образом, мезодерма возникает путем инвагинации, к которой присоединяется иммиграция.

В процессе инвагинации формируется лишь та часть энтодермы, которая впоследствии образует кишечную трубку, точнее, ее эпителиальную выстилку. Остальная энтодерма, которая затем обрастает желток, возникает из глубоких слоев клеток бластодиска путем деляминации внешнего слоя клеток бластодиска или из перибласта. Она называется желточной энтодермой. У многих рыб имеет место один из перечисленных способов образования энтодермы либо комбинация их.

В дальнейшем кишечная энтодерма соединяется с желточной энтодермой в единый внутренний зародышевый листок. На этом завершается гаструляция (рисунок 1.6).

I – дискобластула; II – начало инвагинации бластодермы; III – бластодиск; IV–гаструла; V– образование мезодермы;

1– наружный слой клеток бластодиска; 2 – клеточный материал будущей желточной энтодермы; 3– перибласт; 4– мероциты; 5–желток; 6– бластоцель; 7 – краевая зарубка; 8– гастроцель; 9– клеточный материал хорды; 10–мезодерма; 11– кишечная энтодерма; 12– эктодерма; 13– клеточный материал нервной пластинки

Рисунок 1.6.

Эмбриогенез хрящевых рыб

Закладка осевых органов происходит примерно так же, как и у земноводных, однако в отличие от последних у рыб формирование кишечной трубки происходит иначе в связи с наличием больших запасов желтка в яйцеклетке. Зародыш рыб в процессе развития продолжительное время располагается на нераздробленном желтке в распластанном виде. На первых порах зародыш не имеет брюшной стенки.

Смыкание клеток энтодермы в трубку происходит при обрастании всеми тремя зародышевыми листками резервного желтка и образовании желточного мешка. Интенсивно размножаясь, клетки трех зародышевых листков от тела зародыша начинают распространяться на периферию и надвигаются на желток. Этот процесс носит название процесса обрастания желтка. Наиболее интенсивно он идет спереди и по бокам зародыша.

В задней части зародыша, где шло подворачивание материала в процессе гаструляции, обрастание желтка идет медленнее в связи с интенсивным ростом хвостовой части зародыша. Далее боковые губы бластопора сближаются и срастаются, образуя тем самым брюшную стенку тела зародыша, хвостовая часть зародыша отрывается от желтка, а сам зародыш перемещается к центру зародышевого диска.

После обособления хвостовой части зародыша от желтка обрастание желтка начинается также с задней части бластодиска, или зародышевого диска.

Между головой и туловищем зародыша, с одной стороны, и внезародышевой эктодермой, мезодермой и энтодермой – с другой, возникает сужение – перехват, называемый туловищной складкой. Благодаря туловищной складке головной конец зародыша также отрывается от желтка.

В последнюю очередь от желтка обособляется туловище зародыша. Туловищная складка способствует сворачиванию энтодермы в трубку и образованию брюшной стенки зародыша. Однако процесс сворачивания энтодермы в трубку не охватывает всего кишечника и в средней части туловища кишечная трубка остается несомкнутой.

В этом месте полость кишечника протоком, именуемым желточным стебельком, сообщается с полостью желточного мешка,

С образованием желточного стебелька энтодерма четко подразделяется на кишечную энтодерму и желточную, или внезародышевую, энтодерму. Внезародышевая эктодерма, мезодерма и энтодерма, обрастая полностью желток, образуют желточный мешок, который является временным, или провизорным, органом зародыша (рисунок 1.7).

I – зародыш рыбы с желточным мешком: 1– тело рыбы; 2– желточный мешок, 3 – желток;

II – стенка желточного мешка: 1 – внезародышевая эктодерма; 2– внезародышевая мезодерма; 3–внезародышевая (желточная) энтодерма; 4 – зерна желтка; 5 – ядра клеток желточной энтодермы; 6– кровеносные сосуды внезародышевой мезодермы; 7 – эпителиальные покровные и 8–бокаловидные клетки внезародышевой зктодермы.

Рисунок 1.7Строение желточного мешка костистых рыб

Энтодерма желточного мешка ферментирует желток и всасывает питательные вещества.

Мезодерма желточного мешка благодаря хорошо развитой системе кровеносных сосудов транспортирует питательные вещества к телу зародыша, а покрывающая ее эктодерма выполняет защитные функции. Кроме трофической функции, желточный мешок выполняет дыхательную и кроветворную функции. В конце эмбрионального развития, когда запасы желтка истощаются, желточный мешок либо отпадает, либо становится частью стенки кишечника и брюшной стенки организма.

Читайте также:

Подробности Автор: Super User Опубликовано: 09 Май 2016

Время прохождения различных этапов эмбриогенеза зависит от температуры воды.

Инкубация длится 68-73 сут. Общее значение необходимой для инкубации температуры определено для каждого вида лососей  и называется интегральной температурой, которая выражается в градусо-днях (сумма среднесуточных температур  за период  инкубации). Курсовые на заказ, курсовая на заказ.

Оптимальными температурами для развития симы являются температуры в диапазоне  от 10-12°С  до 6-4°С

Характеристика   основных этапов  эмбрионального развития симы       

                           Характеристика этапов    Темпера-

   тура  воды,°С Градусо-

дни        Длитель-

ность

этапа,

сутки

I этап – образование зародышевого диска, продолжается от оплодотворения до стадии дробления зародышевого диска, процесс продолжается в течении 2-х часов после оплодотворения.

Возрастает прочность оболочки. Курсовые на заказ, курсовая на заказ.

Нижняя поверхность желточного мешка прилипает к оболочке.

II этап-дробление зародышевого диска. Продолжается от начала дробления до формирования «бластомерной бластулы». По мере дробления происходит постепенное уменьшение бластомеров и относительное  увеличение  их  поверхностей. Толчки, удары вызывают повреждение поверхности желточного мешка и истечение его содержимого в перивителлиновое  пространство.

III этап-образование бластулы. Продолжается от образования «бластомерной  бластулы» до начала гаструляции. Происходит образование выпуклого наружного клеточного слоя, представляющего купол зародышевого диска. Полость бластулы заполнена рыхло расположенными клетками. VI этап- образование зародышевых пластов.

Продолжается от начала гаструляции до образования первых мезодермальных сегментов. Начинается обрастание  яйца бластодермой. Поверхность  бластодиска становится плоской. Его края утолщаются, особенно в месте формирования «краевого узелка»-верхней губы бластопора.

По мере обрастания «краевой узелок» увеличивается , превращаясь в «краевой язычок»-зародышевую пластинку. Образуются зародышевые пласты, хорда. В конце этапа начинают формироваться отделы мозга. Vэтап- формирование головы и туловища зародыша. Продолжается  от появления первых  сегментов до формирования 46-47 сегментов. В начале этапа дифференцируются  отделы мозга,  появляются зачатки глаз, немного позже – зачатки  слуховых пузырьков.

В течении этапа формируется хвостовая почка. Вся сегментированная часть тела зародыша соединена с поверхностью желточного мешка. В связи с этим  прекращается  прилипание поверхности  желточного мешка к оболочке. VI этап- обособление задней части тела зародыша от поверхности желточного мешка. Формируется 45-65 сегменты. Сердечная трубка изогнута. Становятся заметными слабые пульсации сердца.

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ РЫБ

Намечается дифференцировка жаберных крышек. Курсовые на заказ, курсовая на заказ. Впереди глаз появляются зачатки обонятельных плакод. На стадии 58 сегмента задняя часть тела зародыша отделяется от  поверхности желточного мешка. Формируется заднепроходное отверстие. Зародыш производит судорожные  движения.

К концу этапа задняя часть туловища зародыша до 29 сегмента отделяется от поверхности  желточного мешка. Заканчивается процесс обрастания  желточного мешка бластодермой. VII этап-этап безгемоглобинового кровообращения в сосудах подкишечно-желточной системы.

Формируются 65-71 сегменты. Передняя часть головы начинает отделяться  от поверхности желточного мешка. Возникают зачатки грудных плавников. Становится заметным слабый ток крови в сосудах.

Кровь содержит мало форменных элементов, бесцветна. На поверхности  желточного мешка появляются кровяные  островки.VIII этап-этап гемоглобинового кровообращения в сосудах подкишечно-желточной системы и возникновения кардинальных вен. В крови появляется  много форменных элементов и гемоглобин. Дифференцируются первичные почки. Возникает зачаток печени, начинают  функционировать сосуды печеночно-желточной системы. Появляется пигмент в глазах.

Число сегментов достигает наибольшего числа-73 (42 туловищных и 31 хвостовых сегмента). Голова отделяется от поверхности  желточного мешкаIX этап-этап печеночно-желточной  системы кровообращения. Сосудистая сеть желточного мешка получает кровь через печеночно-желточную вену. К  концу этапа сеть сосудов покрывает всю поверхность желточного мешка. Формируются сегментные сосуды и сеть сосудов на голове. Устанавливается  жаберное кровообращение. Жаберная крышка прикрывает первую жаберную дужку.

В слуховых пузырьках появляются отолиты и начинается дифференцировка полукружных каналов. Глаза становятся пигментированными. Задние хвостовые сегменты распадаются, их число начинает сокращаться. Число туловищных сегментов прежним ─ 40-41; число хвостовых сегментов уменьшается до 26-28.X этап- этап диффенцировки верхних конусов  сегментальной мускулатуры. Появляются зачатки брюшных и непарных (спинного и анального ) плавников.

Зародыши начинают двигать грудными  плавниками. Возникают меланофоры на туловище и голове. В конце этапа на жаберных дужках начинают дифференциро-ваться  жаберные лепестки.

Ротовая воронка углубляется . Формируются верхние и нижние конусы миотомов. Число хвостовых сегментов уменьшается до 22-23. В желточном мешке мелкие жировые капли начинают сливаться, образуя крупные.

Зародыши энергично двигаются в оболочках. XI этап- этап формирования  ротового отверстия. В течение этого этапа зародыши выходят из оболочек. Курсовые на заказ, курсовая на заказ. Ротовая воронка прорывается.

Формируется ротовое отверстие. Появляются  зачатки верхних и нижних челюстей. Рот становится  слабо подвижным. Возникает дыхательная функция рта. Жаберная крышка почти полностью прикрывает жаберные дужки.

На верхней поверхности головы  и туловища оранжевый пигмент. Железы вылупления покрывают нижнюю и боковые поверхности головы  и переднюю поверхность желточного мешка. Оболочка под действием секрета желез  вылупления размягчается, ее прочность уменьшается,  что облегчает выход зародыша из оболочки.

В конце этапа рот становится органом дыхания, подающим воду к жаберным дужкам. На месте будущих спинного, анального и хвостового плавников в плавниковой складке начинает диффенцироваться  скелетогенная ткань и мышцы. Начинается образование перемычки, разделяющей отверстие обонятельной ямки на переднее и заднее. Курсовые на заказ, курсовая на заказ.

В слуховых пузырьках сформированы полукружные каналы.

Органы боковой линии имеют вид бугорков. Глаза пигментированы, неподвижны. Зародыши  не реагируют на свет. На ток воды реагируют слабо. Они лежат на боку и непрерывно двигают грудными плавниками.

ХII этап- этап формирования непарных и брюшных плавников. В начале этапа дифференцируется вторичная почка. В течении этапа происходит выделение непарных плавников из общей плавниковой складки.

Плавниковая складка начинает резорбироваться. Дифференцируется скелет и мускулатура непарных плавников. В конце  этапа формируется скелет и мускулатура  брюшных плавников. Желточный  мешок  становится  удлиненным. В конце  этапа  его объем  сокращается наполовину по  сравнению с его объемом в начале этапа. Уменьшается дыхательная поверхность  желточного мешка. Возрастает значение жаберного аппарата как органа дыхания.

Развивается  жаберная крышка, усиливается ее присасывающая функция. Из нижнего,  в начале этапа, рот становится  конечным в конце его. На челюстях прорезываются зубы. На свет зародыши  реагируют отрицательно.

Они сбиваются в кучи,  наслаиваются друг на друга, имеют положительную реакцию на ток воды.

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *